
来源:AI入门学习
作者:小伍哥
pandas中的map类似于Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果。
这里我们想要得到gender列的F、M转换为女性、男性的新列,可以有以下几种实现方式先构造一个数据集
map()函数可以用于Series对象或DataFrame对象的一列,接收函数作为或字典对象作为参数,返回经过函数或字典映射处理后的值。
用法:Series.map(arg, na_action=None)
参数:
arg : function, dict, or Series
Mapping correspondence.
na_action : {None, ‘ignore’}, default None
If ‘ignore’, propagate NaN values, without passing them to the mapping
correspondence.
返回:Pandas Series with same as index as caller
官方:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.map.html
首先构建一个数据集,下面进行案例应用
data = pd.DataFrame( {"name":['Jack', 'Alice', 'Lily', 'Mshis', 'Gdli', 'Agosh', 'Filu', 'Mack', 'Lucy', 'Pony'], "gender":['F', 'M', 'F', 'F', 'M', 'F', 'M', 'M', 'F', 'F'], "age":[25, 34, 49, 42, 28, 23, 45, 21, 34, 29]} ) data name gender age 0 Jack F 25 1 Alice M 34 2 Lily F 49 3 Mshis F 42 4 Gdli M 28 5 Agosh F 23 6 Filu M 45 7 Mack M 21 8 Lucy F 34 9 Pony F 29
这里我们编写F、M与女性、男性之间一一映射的字典,再利用map()方法来得到映射列:
#定义F->女性,M->男性的映射字典 gender2xb = {'F': '女性', 'M': '男性'} #利用map()方法得到对应gender列的映射列 data.gender.map(gender2xb) 0 女性 1 男性 2 女性 3 女性 4 男性 5 女性 6 男性 7 男性 8 女性 9 女性
这里我们向map()中传入lambda函数来实现所需功能:
#因为已经知道数据gender列性别中只有F和M所以编写如下lambda函数
data.gender.map(lambda x:'女性' if x == 'F' else '男性') 0 女性 1 男性 2 女性 3 女性 4 男性 5 女性 6 男性 7 男性 8 女性 9 女性 #年龄的平方 data.age.map(lambda x: x**2) 0 625 1 1156 2 2401 3 1764 4 784 5 529 6 2025 7 441 8 1156 9 84
map函数,也可以传入通过def定义的常规函数,看看下面的案例
#性别转换 def gender_to_xb(x): return '女性' if x == 'F' else '男性' data.gender.map(gender_to_xb) 0 女性 1 男性 2 女性 3 女性 4 男性 5 女性 6 男性 7 男性 8 女性 9 女性
map()可以传入的内容有时候可以很特殊,如下面的例子:一些接收单个输入值且有输出的对象也可以用map()方法来处理:
data.gender.map("This kid's gender is {}".format) 0 This kid's gender is F 1 This kid's gender is M 2 This kid's gender is F 3 This kid's gender is F 4 This kid's gender is M 5 This kid's gender is F 6 This kid's gender is M 7 This kid's gender is M 8 This kid's gender is F 9 This kid's gender is F
map()中的参数na_action,类似R中的na.action,取值为None或ingore,用于控制遇到缺失值的处理方式,设置为ingore时串行运算过程中将忽略Nan值原样返回。
s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) s 0 cat 1 dog 2 NaN 3 rabbit
na_action为默认值的情况
s.map('I am a {}'.format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit
na_action为ignore的情况
s.map('I am a {}'.format, na_action='ignore')0 I am a cat1 I am a dog2 NaN3 I am a rabbit
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27