
来源:AI入门学习
作者:小伍哥
pandas中的map类似于Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果。
这里我们想要得到gender列的F、M转换为女性、男性的新列,可以有以下几种实现方式先构造一个数据集
map()函数可以用于Series对象或DataFrame对象的一列,接收函数作为或字典对象作为参数,返回经过函数或字典映射处理后的值。
用法:Series.map(arg, na_action=None)
参数:
arg : function, dict, or Series
Mapping correspondence.
na_action : {None, ‘ignore’}, default None
If ‘ignore’, propagate NaN values, without passing them to the mapping
correspondence.
返回:Pandas Series with same as index as caller
官方:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.map.html
首先构建一个数据集,下面进行案例应用
data = pd.DataFrame( {"name":['Jack', 'Alice', 'Lily', 'Mshis', 'Gdli', 'Agosh', 'Filu', 'Mack', 'Lucy', 'Pony'], "gender":['F', 'M', 'F', 'F', 'M', 'F', 'M', 'M', 'F', 'F'], "age":[25, 34, 49, 42, 28, 23, 45, 21, 34, 29]} ) data name gender age 0 Jack F 25 1 Alice M 34 2 Lily F 49 3 Mshis F 42 4 Gdli M 28 5 Agosh F 23 6 Filu M 45 7 Mack M 21 8 Lucy F 34 9 Pony F 29
这里我们编写F、M与女性、男性之间一一映射的字典,再利用map()方法来得到映射列:
#定义F->女性,M->男性的映射字典 gender2xb = {'F': '女性', 'M': '男性'} #利用map()方法得到对应gender列的映射列 data.gender.map(gender2xb) 0 女性 1 男性 2 女性 3 女性 4 男性 5 女性 6 男性 7 男性 8 女性 9 女性
这里我们向map()中传入lambda函数来实现所需功能:
#因为已经知道数据gender列性别中只有F和M所以编写如下lambda函数
data.gender.map(lambda x:'女性' if x == 'F' else '男性') 0 女性 1 男性 2 女性 3 女性 4 男性 5 女性 6 男性 7 男性 8 女性 9 女性 #年龄的平方 data.age.map(lambda x: x**2) 0 625 1 1156 2 2401 3 1764 4 784 5 529 6 2025 7 441 8 1156 9 84
map函数,也可以传入通过def定义的常规函数,看看下面的案例
#性别转换 def gender_to_xb(x): return '女性' if x == 'F' else '男性' data.gender.map(gender_to_xb) 0 女性 1 男性 2 女性 3 女性 4 男性 5 女性 6 男性 7 男性 8 女性 9 女性
map()可以传入的内容有时候可以很特殊,如下面的例子:一些接收单个输入值且有输出的对象也可以用map()方法来处理:
data.gender.map("This kid's gender is {}".format) 0 This kid's gender is F 1 This kid's gender is M 2 This kid's gender is F 3 This kid's gender is F 4 This kid's gender is M 5 This kid's gender is F 6 This kid's gender is M 7 This kid's gender is M 8 This kid's gender is F 9 This kid's gender is F
map()中的参数na_action,类似R中的na.action,取值为None或ingore,用于控制遇到缺失值的处理方式,设置为ingore时串行运算过程中将忽略Nan值原样返回。
s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) s 0 cat 1 dog 2 NaN 3 rabbit
na_action为默认值的情况
s.map('I am a {}'.format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit
na_action为ignore的情况
s.map('I am a {}'.format, na_action='ignore')0 I am a cat1 I am a dog2 NaN3 I am a rabbit
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17