
来源:AI入门学习
作者:小伍哥
pandas中的map类似于Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果。
这里我们想要得到gender列的F、M转换为女性、男性的新列,可以有以下几种实现方式先构造一个数据集
map()函数可以用于Series对象或DataFrame对象的一列,接收函数作为或字典对象作为参数,返回经过函数或字典映射处理后的值。
用法:Series.map(arg, na_action=None)
参数:
arg : function, dict, or Series
Mapping correspondence.
na_action : {None, ‘ignore’}, default None
If ‘ignore’, propagate NaN values, without passing them to the mapping
correspondence.
返回:Pandas Series with same as index as caller
官方:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.map.html
首先构建一个数据集,下面进行案例应用
data = pd.DataFrame( {"name":['Jack', 'Alice', 'Lily', 'Mshis', 'Gdli', 'Agosh', 'Filu', 'Mack', 'Lucy', 'Pony'], "gender":['F', 'M', 'F', 'F', 'M', 'F', 'M', 'M', 'F', 'F'], "age":[25, 34, 49, 42, 28, 23, 45, 21, 34, 29]} ) data name gender age 0 Jack F 25 1 Alice M 34 2 Lily F 49 3 Mshis F 42 4 Gdli M 28 5 Agosh F 23 6 Filu M 45 7 Mack M 21 8 Lucy F 34 9 Pony F 29
这里我们编写F、M与女性、男性之间一一映射的字典,再利用map()方法来得到映射列:
#定义F->女性,M->男性的映射字典 gender2xb = {'F': '女性', 'M': '男性'} #利用map()方法得到对应gender列的映射列 data.gender.map(gender2xb) 0 女性 1 男性 2 女性 3 女性 4 男性 5 女性 6 男性 7 男性 8 女性 9 女性
这里我们向map()中传入lambda函数来实现所需功能:
#因为已经知道数据gender列性别中只有F和M所以编写如下lambda函数
data.gender.map(lambda x:'女性' if x == 'F' else '男性') 0 女性 1 男性 2 女性 3 女性 4 男性 5 女性 6 男性 7 男性 8 女性 9 女性 #年龄的平方 data.age.map(lambda x: x**2) 0 625 1 1156 2 2401 3 1764 4 784 5 529 6 2025 7 441 8 1156 9 84
map函数,也可以传入通过def定义的常规函数,看看下面的案例
#性别转换 def gender_to_xb(x): return '女性' if x == 'F' else '男性' data.gender.map(gender_to_xb) 0 女性 1 男性 2 女性 3 女性 4 男性 5 女性 6 男性 7 男性 8 女性 9 女性
map()可以传入的内容有时候可以很特殊,如下面的例子:一些接收单个输入值且有输出的对象也可以用map()方法来处理:
data.gender.map("This kid's gender is {}".format) 0 This kid's gender is F 1 This kid's gender is M 2 This kid's gender is F 3 This kid's gender is F 4 This kid's gender is M 5 This kid's gender is F 6 This kid's gender is M 7 This kid's gender is M 8 This kid's gender is F 9 This kid's gender is F
map()中的参数na_action,类似R中的na.action,取值为None或ingore,用于控制遇到缺失值的处理方式,设置为ingore时串行运算过程中将忽略Nan值原样返回。
s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) s 0 cat 1 dog 2 NaN 3 rabbit
na_action为默认值的情况
s.map('I am a {}'.format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit
na_action为ignore的情况
s.map('I am a {}'.format, na_action='ignore')0 I am a cat1 I am a dog2 NaN3 I am a rabbit
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28