京公网安备 11010802034615号
经营许可证编号:京B2-20210330
翱翔太空一直都是人们的梦想,就在近日世界首富贝索斯完成了这个梦想,我们首先来看一下这张图。
(图片来源:互联网)
图中的四个人便是这次太空之旅的乘客,其中包括贝索斯本人,以及他的兄弟马克·贝索斯,83岁的女飞行员沃利·芬克,以及一名18岁的付费旅客奥利弗·戴曼。(说到这里要讲一下,2800万11分钟的太空之旅,这位乘客是真的豪呀!)
火箭的发射地是在美国得克萨斯州,起飞前,贝索斯说,他并不会感到紧张,相反感到很兴奋。接下来就让我们一起感受一下火箭发射的过程。
伴随着轰鸣声火箭成功起飞!
(图片来源:互联网)
火箭在太空中翱翔的画面!
(图片来源:互联网)
7分钟后,飞船助推器成功回收!
(图片来源:互联网)
仅10分钟后,乘员舱也成功降落,“翱翔太空”之旅到此结束!
(图片来源:互联网)
火箭成功降落地球后,可以看出贝索斯未受到影响!
(图片来源:互联网)
贝索斯安全返回地球后,引起了一大批粉丝欢呼。有趣的是,一个名为Change.org的网站统计显示,有十几万人不希望他“返回地球”。
贝索斯并非是第一个开启商业太空旅行的人,就在蓝色起源大张旗鼓竞拍新谢泼德号座席后没多久,另一家商业航天公司维珍银河于北京时间7月11日晚,抢飞成功。
从1961第一个进入太空的尤里加加林到今日,我们科技发生了巨大的变化。曾几何时,我们向往太空,到今日把它变为现实,我们的先辈付出了努力与热血。
如今,人工智能、大数据已经成为互联网的领头羊。我们的生活中处处都要和人工智能打交道,与大数据同行,每人每分每秒都在产生数据,在如此巨大的数据中,数据分析师可以使企业清晰的了解到目前的现状与竞争环境,风险评判与决策支持,能够充分利用数据带来的价值,给企业决策者的将是一份清晰、准确且有数据支撑的“有价值”报告。
据统计,国外有90%以上的企业都成立了数据分析团队,而我国数据分析人才缺口达到了150万。
在这种趋势之下,数据分析已经不单单是数据分析师的“专业本领,”意味着成为我们每一个职场人士都需要掌握的技能。
目前,互联网、金融、咨询、电信、零售、医疗、旅游等行业,都迫切需要专门从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。
CDA数据分析师认证得到了教育部主管协会中国成人教育协会认可,跻身为2020年“终身学习品牌项目”,成为大数据及人工智能领域长期、稳定、专业的行业人才标准。
CDA数据分析师行业标准由国际范围数据科学领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了公立性、共识性、前沿性,符合当今全球数据科学技术潮流,为各行业企业和机构提供数据人才参照标准。
数据分析需求大
由于数据分析人才就业市场需求量巨大,未来5年数据分析师将以超20%的年增长率高速增长,市场迫切需求让数据分析岗位呈现出多元化面貌。
纯数据孵化出数据工程师、数据科学家和人工智能专家等,而伴随企业数字化转型,不同行业、不同岗位都对数据分析技能,提出了个性化的要求,使得数据赋能岗位更加多样化。
因此,分工细、选择多的数据分析技能得到了求职者青睐,这也是CDA认证考生数量逐年稳健攀升的关键因素之一。
国家政策扶持
▲《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》中强调:“加快数字化发展。发展数字经济,打造具有国际竞争力的数字产业集群。”
▲ 2019世界人工智能大会发布,全国AI&大数据人才需求呈快速增长态势,约为4年前的12倍。
▲ 清华大学经管学院发布的《中国经济的数字化转型:人才与就业》报告显示,2025年,数据分析人才缺口预计将达到230万。
目前,数据分析师在国内的人才需求量非常大,且国家政策扶持力度在迅速地攀升。
无论是从国家发展的战略方向,还是就业市场的巨大规模导向,都揭示了数据分析师技能的重要性,这是个具有代表性的跨时代技能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12