
传统上,企业将数据战略集中在power BI商业智能(BI)上,但预测和规范分析平台的兴起,部分归功于机器学习和人工智能,正在改变这个方程式。即使是商业智能本身也在不断发展,这也是以前业务分析平台独有的功能。不过,随着互联网科技的发展,各个企业的各个业务层级都在不断扩大升级优化,理解商业智能和数据分析之间的区别与联系,明确数据分析为企业带来的价值,对于正确实施数据战略至关重要。
因此,打破power BI商业智能与数据分析的结界,使得二者更好地结合并运用于企业运作的各个部门和业务当中,对一个企业的发展和壮大至关重要,对一个人的职业发展也是至关重要的。
power BI商业智能与业务分析
最广泛意义上的分析适用于所有支持技术的问题解决活动。专家通常将分析分为四个类别,在曲线的最不成熟部分进行描述性分析和诊断分析,在高端进行预测分析和规范分析。
Power BI是大多数组织在执行分析程序时开始的,它处于描述阶段。商业智能利用软件和服务将数据转换为可操作的情报,从而为组织的战略和战术业务决策提供信息。它使组织能够收集,分析和呈现数据分析。
“这是有关数据本身的信息。乔治亚理工学院Scheller商学院商业分析中心执行主任Beverly Wright解释说,除了讲述数据所说的内容之外,它不会做任何事情。
虽然一些商人可能会将power BI 与分析交换使用,但Wright表示,数据专业确实可以区分这两者。有些人将BI描述为提供对更广泛的分析领域(尤其是高级分析)所发生情况的洞察,预测未来各种情况下会发生什么。
power BI用于商业用途
BI使用来自传统企业平台的更多结构化数据,例如企业资源规划(ERP)或财务软件系统,并且可以在运营和供应链等领域提供过去金融交易或其他过去行动的视图。今天,专家表示,BI对组织的价值来自于它能够提供对这些领域和业务任务的可见性,包括合同对账。
Wright说,与企业技术堆栈的许多其他部分一样,BI工具已经发展为更加直观和用户友好。她解释说,过去,组织需要数据科学家来使用这些系统并构建仪表板。今天他们是自动化的。这意味着组织可以更轻松地建立数据程序,允许非技术商人使用BI工具生成报告并获取他们所需的大部分信息,而无需日常使用中的数据专业人员。分析人士认为,仅此一点就是BI技术在企业中的重要工具。
Wright说,这类被称为“公民分析师”的新型商业用户是营销,运营,财务或高级管理人员,他们“不具备数据或建模或分析方面的知识,但他们可以依赖于工具或系统以非常简单的方式为他们提供所需的信息。“
power BI商业智能作为业务分析的门户
虽然报告解决方案等BI工具仍然在企业中占有一席之地,但分析师表示他们的能力有限。
全球管理咨询公司Bain&Co。在其2017年报告“数字化转型的IT设计规则”中表示,其对IT领导者的调查显示,超过50%的组织使用至少三种不同的分析提供商来生成绩效报告。它进一步指出:“CIO迫切希望能够将单独的数据源集成并合成到一个可以覆盖整个基础架构的分析引擎。”
专家说,更重要的是,power BI工具无法对可以带来新商机和增长的数据进行最深入的分析。
“power BI不会带来收入和创新,”企业管理协会商业智能高级分析师约翰迈尔斯说。
虽然迈尔斯估计有20%的美国组织仍然处于分析采用的BI阶段,但他表示大多数组织都不希望在那里结束他们的分析工作。迈尔斯发现的是,用户通常会受到BI工具生成的信息的鼓励,并希望数据开始回答日益复杂的问题。
事实上,贝恩报告还指出,IT运营经理将“高级分析”列为“他们最想拥有的能力,但只有少数人表示他们现在可以访问该技术”。
迈尔斯解释说,用户可能首先查看销售数据,然后希望按州或产品组织数据。然后,他们希望今年看到他们的前十大客户,他们的共同属性,并根据这些信息,他们想知道哪一个将是未来一年的前十大客户。
“你已经从添加内容并以不同的方式呈现它。这就是许多人称之为报告或静态仪表板或传统商业智能的原因,“迈尔斯说。“但是当你开始向前推进或使用预测分析时,当你不得不做更复杂的数学运算时,你就会进入许多人所看到的分析。”
迈尔斯阐述了BI使用基本计算来提供答案,而其他形式的分析 - 包括预测和规范 - 使用数学模型来确定属性并提供预测。他进一步指出,机器学习和人工智能处于分析连续体的最远端。
power BI模糊了这条线
虽然数据专业人员在高级分析中仍然扮演着重要的角色,例如模型周围,但Myers表示他们的参与程度因业务案例而异。例如,用于检测潜在信用卡欺诈的高级分析系统需要速度,因此依赖于无监督模型与数据科学家查询系统。
Myers补充说,组织通常会购买现成的BI产品以及商业高级分析产品,但他们倾向于让自己的数据专业人员构建他们需要的机器学习和AI功能,“因为市场上没有一套软件包; 产品就不存在了。“
然而,随着企业对其BI平台及其他分析工具的需求增加,解决方案市场正在发生变化,负责贝恩全球高级分析实践并曾领导其技术实践的Chris Brahm说。
Brahm表示,许多BI工具正在引入更多,更好的数据信号,以生成更准确,更具洞察力的报告,这些报告模糊了传统上将BI与更高级分析分开的区别。因此,他补充说,商业智能供应商需要推进,否则就有可能在市场上失利。
“他们能否发展为企业中的管理者提供实时高质量的信息,因为管理者往往是主要用户?他们能否使用新的数据集和新技术提供更好的实时信息?因为如果他们不能,那么新的提供者将进入 - 他们正在进入 - 并回答管理者所拥有的问题,“他说。
他说,这些新系统通过回答有关如何最大化和优化业务的问题来帮助用户做出更好的决策——业务目标应该是谁,提供什么样的促销以及向谁提供哪些促销。
“有许多进入市场的玩家正在为管理人员和一线工作人员提供超出传统商务智能的分析,”他说,并补充说这些工具正在使用新技术和数据集来提供更好的服务,更全面的回答管理者在特定领域的问题,如供应链,运营和研发。
技术公司往往更接近采用曲线,而最有可能已采用高级分析功能的公司,包括机器学习和人工智能。
Brahm说,更传统的行业背后,他们也认为高级分析对未来的成功至关重要。他表示,贝恩的研究表明,70%的组织领导者认为高级分析和人工智能是业务的重中之重。
“每个人,”他补充说,“正朝着这个方向前进。”
事不宜迟
快快启动你的
CDA《Power BI 直播课程》吧!
6月17日20:00
我们邀请了数据分析界大咖
李奇老师做客直播室
给大家带来一场精彩绝伦的数据分析盛宴
销售情况分析报表的制作
主讲人
李奇老师
曾担任IBM中国担任销售管理团队数据分析项目组长及德勤北京所的数据分析高级咨询顾问,精于企业数据分析、制定商业智能业务解决方案、软件开发及Excel培训等领域。
直播大纲
1.POWER BI概述
2.业务介绍
3.数据介绍
4.销售情况分析报表的制作
6月17日周四晚8点
扫描下方二维码
免费获取直播链接
“扫码即送价值1999元的
【数据分析技能提升大礼包】”
【大厂数据分析案例+技能操作视频+能力监测试题+核心笔记归纳】
上手就用,轻松拿下高薪offer
为什么BI商业数据分析是值得选择的方向?
互联网下半场,各业务岗位人员急需数据能力、商业思维武装自己,在窗口期把握机会,让自己的职业发展迈上新台阶。
(1)岗位缺口大:150万岗位缺口,人才供需比仅为0.05;
(2)就业领域广:适合众多行业众多岗位,各行业运营、营销、市场、产品、财务、销售等岗位全覆盖;
(3)薪资水平高:平均薪资在20k/月,应届毕业生平均薪资10K/月。
给你的业务赋能,助你实现直线超车
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14