
CDA数据分析师 出品
【导语】:今天我们来聊聊粽子,Python分析部分请看第三部分。
又到一年端午节,作为中华民族的传统节日,传说粽子是为祭奠投江的屈原而传承下来的,如今吃粽子也成了端午的主要习俗之一。除了商场出售的琳琅满目的粽子,各家各户的妈妈和奶奶们也纷纷浸糯米、洗粽叶、包粽子。
粽子的包法和形状也很有讲究,除了常见的三角粽、四角粽,还长粽、塔型粽和牛角粽等等。
说到粽子的口味就更多了。粽子几乎每年都会引发咸甜之争,有句话说的是——吃货不分南北,口味必分甜咸。
北方人吃粽子偏爱甜口,多以红枣、豆沙做馅,少数也采用果脯为馅,蘸白糖或红糖食用;
而南方青睐咸口,口味有咸肉粽、咸蛋黄粽、板栗肉粽、腊肉香肠粽、火腿粽、虾仁粽等等。
那么哪家的粽子买得最好?大家都普遍喜欢什么口味?今天我们就用数据来盘一盘端午的粽子。
本文要点:
自己包粽子选什么料?
自己家包的粽子,永远是最好吃的,相比起来外面卖的粽子都不香了。对厨艺有自信的小伙伴们大可以自己试着包包看。
那么自己包粽子,选甜口还是咸口?馅料配红豆还是五花肉?
首先我们获取了,美食天下网站关于粽子的菜谱,共460条。看看哪些菜谱最受欢迎吧。
1、吃甜粽还是咸粽?
在甜咸之争中,这次甜粽胜出了。
有33.04%的菜谱都是甜粽,其次22.17%才是咸粽。同时也有许多小伙伴选择最简单的纯糯米粽,原味,这部分占比17.83%。
2、粽子里包了什么?
食材方面我们看到:
无论如何糯米和粽叶都是必不可少的。
然后在咸粽方面,五花肉很多人的首选,其次咸蛋黄、香菇、排骨、腊肠等都是常见的选择;在甜粽方面呢,红豆蜜枣是很多人的首选。其次绿豆、豆沙、花生米、西米等也不错。
3、调料放什么?
调料方面可以看到:
糖和酱油是少不了的。还花生油、蚝油等选择。除了这些常规操作,也还有选择抹茶粉这种创新的做法。
全网粽子谁家卖的最好?
出于自己不会包粽子、图方便、过节送人等考虑,直接在网上买粽子的人也不少。那么哪些店铺的粽子最受大众欢迎呢?我们分析获取了淘宝售卖粽子商品数据,共4403条。
1、全网谁家的粽子卖得最好?
首先在店铺方面:
五芳斋是妥妥的霸主,粽子销量位居第一。其次真真老老位居第二。
2、哪个省份是粽子大省?
这些店铺都来自哪里?谁是真正的粽子大省呢?
经过分析发现,浙江一骑绝尘,粽子店铺数量远远领先其他省份。浙江的粽子店铺占到全网的67.71%。毫无争议的大佬。
其次广东、上海、北京分部位于第二、三、四名。
3、粽子都卖多少钱
粽子都卖多少钱也是消费者们最关系的了,淘宝店铺买的粽子一般一份有10个左右。分析发现,价格在一份50元以内的还是占到绝多数,全网有55.22%的粽子都在50元内。其次是50-100元的,占比24.81%。
4、不同价格粽子的销量
那么销售额方面又如何呢,什么价格的粽子卖的最好?
可以看到50-100元的粽子销售额最高,占比53.61%。其次是50元以内的,占比22.06%。毕竟从送礼品的角度,还是要一定价格考量的,太平价的不行,需要一定的档次。
5、粽子商品标题里都在说些什么?
最后,我们再看到粽子的商品标题:
整理发现,除了"粽子"、"端午"等关键词,"嘉兴"被提到的最多。看来嘉兴的粽子是真的很有名呀。
粽子馅料方面,"蛋黄"、"鲜肉"、"豆沙"都是非常热门的。同时"礼盒包装"、"送礼"、"五芳斋"等也被多次提到。
爬取淘宝粽子数据
我们使用Python获取了淘宝网粽子商品销售数据和美食天下菜谱数据,进行了一下数据分析。此处展示淘宝商品分析部分代码。按照数据读入-数据处理和数据可视化流程,首先导入我们使用的Python库,其中pandas用于数据处理,jieba用于分词,pyecharts用于可视化。
# 导入包
import pandas as pd
import time
import jieba
from pyecharts.charts import Bar, Line, Pie, Map, Page
from pyecharts import options as opts
from pyecharts.globals import SymbolType, WarningType
WarningType.ShowWarning = False
1、数据导入
# 读入数据
df_tb = pd.read_excel('../data/淘宝商城粽子数据6.23.xlsx')
df_tb.head()
查看一下数据集大小,可以看到一共有4403条数据。
df_tb.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4403 entries, 0 to 4402
Data columns (total 5 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 goods_name 4403 non-null object
1 shop_name 4403 non-null object
2 price 4403 non-null float64
3 purchase_num 4403 non-null object
4 location 4403 non-null object
dtypes: float64(1), object(4)
memory usage: 172.1+ KB
2、数据预处理
我们对数据集进行以下处理,以便我们后续的可视化分析工作,经过处理之后的数据共4192条。
# 去除重复值
df_tb.drop_duplicates(inplace=True)
# 删除购买人数为空的记录
df_tb = df_tb[df_tb['purchase_num'].str.contains('人付款')]
# 重置索引
df_tb = df_tb.reset_index(drop=True)
# 提取数值
df_tb['num'] = df_tb['purchase_num'].str.extract('(d+)').astype('int')
# 提取单位
df_tb['unit'] =
df_tb.purchase_num.str.extract(r'(万)')
df_tb['unit'] = df_tb.unit.replace('万', 10000).replace(np.nan, 1)
# 重新计算销量
df_tb['true_purchase'] = df_tb['num'] * df_tb['unit']
# 删除列
df_tb = df_tb.drop(['purchase_num', 'num', 'unit'], axis=1)
# 计算销售额
df_tb['sales_volume'] = df_tb['price'] * df_tb['true_purchase']
# 提取省份
df_tb['province'] = df_tb['location'].str.split(' ').str[0]
df_tb.head()
3、数据可视化
数据可视化部分主要对以下的数据进行汇总分析,分析维度如下:
粽子店铺商品销量排行Top10
shop_top10 = df_tb.groupby('shop_name')['true_purchase'].sum().sort_values(ascending=False).head(10)
# 条形图
bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar1.add_xaxis(shop_top10.index.tolist())
bar1.add_yaxis('', shop_top10.values.tolist())
bar1.set_global_opts(title_opts=opts.TitleOpts(title='粽子店铺商品销量排行Top10'),
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
visualmap_opts=opts.VisualMapOpts(max_=1350657.0)
)
bar1.render()
各省份粽子店铺数量排行Top10
province_top10 =
df_tb.province.value_counts()[:10]
# 条形图
bar2 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar2.add_xaxis(
province_top10.index.tolist())
bar2.add_yaxis('',
province_top10.values.tolist())
bar2.set_global_opts(title_opts=opts.TitleOpts(title='各省份粽子店铺数量排行Top10'),
visualmap_opts=opts.VisualMapOpts(max_=1000)
)
bar2.render()
浙江vs其他省份店铺粽子销量对比
names = ['浙江', '其他省份']
numbers = [3378601.0, 1611409.0]
data_pair = [list(z) for z in zip(names, numbers)]
# 绘制饼图
pie1 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px'))
pie1.add('', data_pair, radius=['35%', '60%'])
pie1.set_global_opts(title_opts=opts.TitleOpts(title='浙江vs其他省份店铺粽子销量对比'),
legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%'))
pie1.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%"))
pie1.set_colors(['#EF9050', '#3B7BA9'])
pie1.render()
全国店铺粽子销量分布
province_num = df_tb.groupby('province')['true_purchase'].sum().sort_values(ascending=False)
# 地图
map1 = Map(init_opts=opts.InitOpts(width='1350px', height='750px'))
map1.add("", [list(z) for z in zip(province_num.index.tolist(),
province_num.values.tolist())],
maptype='china'
)
map1.set_global_opts(title_opts=opts.TitleOpts(title='全国店铺粽子销量分布'),
visualmap_opts=opts.VisualMapOpts(max_=300000),
)
map1.render()
粽子都卖多少钱?
# 分箱
bins = [0,50,100,150,200,500,1000,9999]
labels = ['0-50元', '50-100元', '100-150元', '150-200元', '200-500元', '500-1000元', '1000-9999元']
df_tb['price_cut'] = pd.cut(df_tb.price, bins=bins, labels=labels, include_lowest=True)
price_num = df_tb['price_cut'].value_counts()
# 数据对
data_pair2 = [list(z) for z in zip(price_num.index.tolist(), price_num.values.tolist())]
# 绘制饼图
pie2 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px'))
pie2.add('', data_pair2, radius=['35%', '60%'], rosetype='radius')
pie2.set_global_opts(title_opts=opts.TitleOpts(title='粽子都卖多少钱?'),
legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%'))
pie2.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%"))
pie2.set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF'])
pie2.render()
不同价格区间的销售额
# 添加列
cut_purchase = round(df_tb.groupby('price_cut')['sales_volume'].sum())
# 数据对
data_pair = [list(z) for z in zip(cut_purchase.index.tolist(),
cut_purchase.values.tolist())]
# 绘制饼图
pie3 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px'))
pie3.add('', data_pair, radius=['35%', '60%'])
pie3.set_global_opts(title_opts=opts.TitleOpts(title='不同价格区间的销售额表现'),
legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%'))
pie3.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%"))
pie3.set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF', '#7FFFAA'])
pie3.render()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25