
嗨喽,各位同学又到了公布CDA数据分析师认证考试LEVEL II的模拟试题时间了,今天给大家带来的是模拟试题(一)中的96-1000题。更多题目请点击
不过,在出题前,要公布上一期LEVEL II中91-95题的答案,大家一起来看!
91、A
92、C
93、B
94、A
95、A
你答对了吗?
96.选择题是设计市场调查问卷时常用的题目类型,关于多选题和单选题的优缺点,以下说法不正确的是?
A.多选题相比单选题提供的信息量大。
B.单选题提供的信息量相对较少,但比较便于后期编码和统计分析。
C.单选题和多选题可以同时放在一张问卷中。
D.一般尽量使用多选题,因为提供的信息量多,信效度分析和统计分析比较容易。
97.下图是两个多选题的编码方式,请问右侧编码的最重要的优点是什么?
A.提供选择的题项及个数信息。
B.提供选择的题项信息。
C.提供选择的题项及程度信息。
D.提供选择的题项个数信息。
98.市场调查资料的加工整理技术的选择决定了调查的最终效果。调查资料编码技术就是比较重要的一项技术,编码分事前编码与事后编码,请问事前编码更适用于下面哪种问题?( )
A.开放式问题
B.封闭式问题
C.随机问题
D.情感问题
99.Cochran于1977年提出变量百分比的样本量的近似公式:
,说法不正确的是
A.(1-n/N)是有限总体纠正因子
B.d是置信区间
C.p*q是方差
D.t是误差概率
100.一项针对全国25-35岁用户群的手机喜好调查,但调研项目经费大概是10万元,并且用户群相对集中在中国中部城市。前期预调研显示,用户群的数值方差和调研费用不等。以下哪种情况是比较适宜的调查方式?
A.简单随机抽样(全国抽样→选择样本)
B.分层随机抽样(东中西城市分层→对层内进行分群→再选择样本)
C.分群抽样(全国城市分群抽样→再选择样本)
D.多阶段抽样(全国城市分层→重点城市分群→再选中城市中分层→再选择样本)
认真答题哦,我们将在下一期公布正确答案,敬请期待。
登录CDA认证考试官网注册报名
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
Level Ⅰ:随报随考。
Level Ⅱ:随报随考。
Level Ⅲ:一年四届(3、6、9、12月的最后一个周六),每届考前一个月截止该届报名。
Level Ⅰ+Ⅱ:中国内地30+省市,70+城市,250+考场。考生可选择就近考场预约考试。
Level Ⅲ:中国内地30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04