
来源:早起Python
作者:刘早起
大家好,我是早起。
最近我在和不同读者的交流中,发现很多人和我一样,日常使用的主语言并不是Python,可能是Java/R/Excel等,学Python倒不如说是学requests采集数据,Pandas数据处理、办公自动化、数据可视化等用于辅助工作的功能。
关于爬虫我基本上每周的都会有分享不同的案例,Python数据处理也推出了Pandas120题、NumPy80题、办公自动化也累积了20余个真实案例,但唯独在数据可视化上我没有写出一个不错的专题。
为什么?因为Python数据可视化工具太多了,比如matplotlib、seaborn、pyecharts等,不同的工具使用逻辑不一致,并且同一个工具不同版本之间的绘图逻辑也有差异,怎么办?
为了尝试解决这个问题,早起找了几位同样热爱数据分析可视化的小伙伴,从matplotlib出发,围绕数据可视化打造一个全新的公众号「可视化图鉴」,与其说是公众号,我更愿意把它当成一个小工具用
图鉴,就是让你在需要使用Python进行可视化的场景下,快速找到你想要的图并制作出来。
「先把你想要的图画出来,再去研究背后的逻辑!」
我们以matplotlib为起点开始创作,目前围绕matplotlib已经更新了大多数图的基础、进阶图以及少量的高级样式图型图鉴,每一幅图都给出了matplotlib版本、完整可执行的源码以及绘图原理讲解,以下为部分图鉴示例,点击图片可以直达
你只要选中你想要的图,点进去,复制我的代码,替换你的数据,就能快速将你的数据进行可视化,当然如果你想进一步了解图是如何做出来的,不仅有详细的注释,也配上了对应的文档,进一步加深你对这幅图的理解!
当然,现在收录的图鉴(大概近100张基于matplotlib的图)还远远达不到满足大多数用户的需求,但已经覆盖了常用的图,我们也继续在马不停蹄的制作中。
正如我刚开始所说,Python的可视化工具太多了,在去年我也对常用的Python可视化工具进行了对比,在那篇文章的末尾我有说到 「熟练掌握一个工具之后,了解其他工具即可!」 ,其实当时要求大家熟练掌握的工具就是matplotlib
为什么是matplotlib,从下图我们可以发现,现在流行的Python可视化工具或多或少都与matplotlib沾上一点关系,很多就是在matplotlib的基础上改进而来
另一个方面是matplotlib是安装相对简单、资料相对较多的,在没有任何Python环境的机器上,你只需要下载一个anaconda,之后傻瓜式一键安装就可以使用,而其他的库大多数需要额外进行安装、配置。并且在上面提到的文章中,我也说过:「如果你使用matplotlib,遇到一点问题,网上有很多帖子能够帮到你」,而其他的工具遇到一些细节性的问题,则不一定能通过搜索解决!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02