
英文:
https://arpitbhayani.me/blogs/string-interning
作者:arpit
来源:豌豆花下猫(Python猫)
声明:本翻译是出于交流学习的目的,基于 CC BY-NC-SA 4.0 授权协议。为便于阅读,内容略有改动。
每种编程语言为了表现出色,并且实现卓越的性能,都需要有大量编译器级与解释器级的优化。
由于字符串是任何编程语言中不可或缺的一个部分,因此,如果有快速操作字符串的能力,就可以迅速地提高整体的性能。
在本文中,我们将深入研究 Python 的内部实现,并了解 Python 如何使用一种名为字符串驻留(String Interning)的技术,实现解释器的高性能。 本文的目的不仅在于介绍 Python 的内部知识,而且还旨在使读者能够轻松地浏览 Python 的源代码;因此,本文中将有很多出自 CPython 的代码片段。
全文提纲如下:
字符串驻留是一种编译器/解释器的优化方法,它通过缓存一般性的字符串,从而节省字符串处理任务的空间和时间。
这种优化方法不会每次都创建一个新的字符串副本,而是仅为每个适当的不可变值保留一个字符串副本,并使用指针引用之。
每个字符串的唯一拷贝被称为它的intern,并因此而得名 String Interning。
Python猫注:String Interning 一般被译为“字符串驻留”或“字符串留用”,在某些语言中可能习惯用 String Pool(字符串常量池)的概念,其实是对同一种机制的不同表述。intern 作为名词时,是“实习生、实习医生”的意思,在此可以理解成“驻留物、驻留值”。
查找字符串 intern 的方法可能作为公开接口公开,也可能不公开。现代编程语言如 Java、Python、PHP、Ruby、Julia 等等,都支持字符串驻留,以使其编译器和解释器做到高性能。
字符串驻留提升了字符串比较的速度。 如果没有驻留,当我们要比较两个字符串是否相等时,它的时间复杂度将上升到 O(n),即需要检查两个字符串中的每个字符,才能判断出它们是否相等。
但是,如果字符串是固定的,由于相同的字符串将使用同一个对象引用,因此只需检查指针是否相同,就足以判断出两个字符串是否相等,不必再逐一检查每个字符。由于这是一个非常普遍的操作,因此,它被典型地实现为指针相等性校验,仅使用一条完全没有内存引用的机器指令。
字符串驻留减少了内存占用。 Python 避免内存中充斥多余的字符串对象,通过享元设计模式共享和重用已经定义的对象,从而优化内存占用。
像大多数其它现代编程语言一样,Python 也使用字符串驻留来提高性能。在 Python 中,我们可以使用is运算符,检查两个对象是否引用了同一个内存对象。
因此,如果两个字符串对象引用了相同的内存对象,则is运算符将得出True,否则为False。
>>> 'python' is 'python' True
我们可以使用这个特定的运算符,来判断哪些字符串是被驻留的。在 CPython 的,字符串驻留是通过以下函数实现的,声明在 unicodeobject.h 中,定义在 unicodeobject.c 中。
PyAPI_FUNC(void) PyUnicode_InternInPlace(PyObject **);
为了检查一个字符串是否被驻留,CPython 实现了一个名为PyUnicode_CHECK_INTERNED的宏,同样是定义在 unicodeobject.h 中。
这个宏表明了 Python 在PyASCIIObject结构中维护着一个名为interned的成员变量,它的值表示相应的字符串是否被驻留。
#define PyUnicode_CHECK_INTERNED(op) (((PyASCIIObject *)(op))->state.interned)
在 CPython 中,字符串的引用被一个名为interned的 Python 字典所存储、访问和管理。 该字典在第一次调用字符串驻留时,被延迟地初始化,并持有全部已驻留字符串对象的引用。
4.1 如何驻留字符串?
负责驻留字符串的核心函数是PyUnicode_InternInPlace,它定义在 unicodeobject.c 中,当调用时,它会创建一个准备容纳所有驻留的字符串的字典interned,然后登记入参中的对象,令其键和值都使用相同的对象引用。
以下函数片段显示了 Python 实现字符串驻留的过程。
void PyUnicode_InternInPlace(PyObject **p) {
PyObject *s = *p;
.........
// Lazily build the dictionary to hold interned Strings if (interned == NULL) {
interned = PyDict_New();
if (interned == NULL) {
PyErr_Clear();
return;
}
}
PyObject *t;
// Make an entry to the interned dictionary for the // given object t = PyDict_SetDefault(interned, s, s);
.........
// The two references in interned dict (key and value) are // not counted by refcnt. // unicode_dealloc() and _PyUnicode_ClearInterned() take // care of this. Py_SET_REFCNT(s, Py_REFCNT(s) - 2);
// Set the state of the string to be INTERNED _PyUnicode_STATE(s).interned = SSTATE_INTERNED_MORTAL;
}
4.2 如何清理驻留的字符串?
清理函数从interned字典中遍历所有的字符串,调整这些对象的引用计数,并把它们标记为NOT_INTERNED,使其被垃圾回收。一旦所有的字符串都被标记为NOT_INTERNED,则interned字典会被清空并删除。
这个清理函数就是_PyUnicode_ClearInterned,在 unicodeobject.c 中定义。
void _PyUnicode_ClearInterned(PyThreadState *tstate) {
.........
// Get all the keys to the interned dictionary PyObject *keys = PyDict_Keys(interned);
.........
// Interned Unicode strings are not forcibly deallocated; // rather, we give them their stolen references back // and then clear and DECREF the interned dict. for (Py_ssize_t i = 0; i < n; i++) {
PyObject *s = PyList_GET_ITEM(keys, i);
.........
switch (PyUnicode_CHECK_INTERNED(s)) {
case SSTATE_INTERNED_IMMORTAL:
Py_SET_REFCNT(s, Py_REFCNT(s) + 1);
break;
case SSTATE_INTERNED_MORTAL:
// Restore the two references (key and value) ignored // by PyUnicode_InternInPlace(). Py_SET_REFCNT(s, Py_REFCNT(s) + 2);
break;
case SSTATE_NOT_INTERNED:
/* fall through */ default:
Py_UNREACHABLE();
}
// marking the string to be NOT_INTERNED _PyUnicode_STATE(s).interned = SSTATE_NOT_INTERNED;
}
// decreasing the reference to the initialized and // access keys object. Py_DECREF(keys);
// clearing the dictionary PyDict_Clear(interned);
// clearing the object interned Py_CLEAR(interned);
}
既然了解了字符串驻留及清理的内部原理,我们就可以找出 Python 中所有会被驻留的字符串。
为了做到这点,我们要做的就是在 CPython 源代码中查找PyUnicode_InternInPlace 函数的调用,并查看其附近的代码。下面是在 Python 中关于字符串驻留的一些有趣的发现。
5.1 变量、常量与函数名
CPython 对常量(例如函数名、变量名、字符串字面量等)执行字符串驻留。
以下代码出自codeobject.c,它表明在创建新的PyCode对象时,解释器将对所有编译期的常量、名称和字面量进行驻留。
PyCodeObject * PyCode_NewWithPosOnlyArgs(int argcount, int posonlyargcount, int kwonlyargcount,
int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject *names,
PyObject *varnames, PyObject *freevars, PyObject *cellvars,
PyObject *filename, PyObject *name, int firstlineno,
PyObject *linetable) {
........
if (intern_strings(names) < 0) {
return NULL;
}
if (intern_strings(varnames) < 0) {
return NULL;
}
if (intern_strings(freevars) < 0) {
return NULL;
}
if (intern_strings(cellvars) < 0) {
return NULL;
}
if (intern_string_constants(consts, NULL) < 0) {
return NULL;
}
........
}
5.2 字典的键
CPython 还会驻留任何字典对象的字符串键。
当在字典中插入元素时,解释器会对该元素的键作字符串驻留。以下代码出自 dictobject.c,展示了实际的行为。
有趣的地方:在PyUnicode_InternInPlace函数被调用处有一条注释,它问道,我们是否真的需要对所有字典中的全部键进行驻留?
int PyDict_SetItemString(PyObject *v, const char *key, PyObject *item) {
PyObject *kv;
int err;
kv = PyUnicode_FromString(key);
if (kv == NULL)
return -1;
// Invoking String Interning on the key PyUnicode_InternInPlace(&kv); /* XXX Should we really? */ err = PyDict_SetItem(v, kv, item);
Py_DECREF(kv);
return err;
}
5.3 任何对象的属性
Python 中对象的属性可以通过setattr函数显式地设置,也可以作为类成员的一部分而隐式地设置,或者在其数据类型中预定义。
CPython 会驻留所有这些属性名,以便实现快速查找。 以下是函数PyObject_SetAttr的代码片段,该函数定义在文件object.c中,负责为 Python 对象设置新属性。
int PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value) {
........
PyUnicode_InternInPlace(&name);
........
}
5.4 显式地驻留
Python 还支持通过sys模块中的intern函数进行显式地字符串驻留。
当使用任何字符串对象调用此函数时,该字符串对象将被驻留。以下是 sysmodule.c 文件的代码片段,它展示了在sys_intern_impl函数中的字符串驻留过程。
static PyObject * sys_intern_impl(PyObject *module, PyObject *s) {
........
if (PyUnicode_CheckExact(s)) {
Py_INCREF(s);
PyUnicode_InternInPlace(&s);
return s;
}
........
}
只有编译期的字符串会被驻留。 在解释时或编译时指定的字符串会被驻留,而动态创建的字符串则不会。
Python猫注:这一条规则值得展开思考,我曾经在上面踩过坑……有两个知识点,我相信 99% 的人都不知道:字符串的 join() 方法是动态创建字符串,因此其创建的字符串不会被驻留;常量折叠机制也发生在编译期,因此有时候容易把它跟字符串驻留搞混淆。
包含 ASCII 字符和下划线的字符串会被驻留。 在编译期间,当对字符串字面量进行驻留时,CPython 确保仅对匹配正则表达式[a-zA-Z0-9_]*的常量进行驻留,因为它们非常贴近于 Python 的标识符。
Python猫注:关于 Python 中标识符的命名规则,在 Python2 版本只有“字母、数字和下划线”,但在 Python 3.x 版本中,已经支持 Unicode 编码。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02