
来源:早起Python
作者:陈熹
40个Python办公自动化案例合辑
大家好,我是早起。本文将分享一个常见办公场景下的Python自动化案例,主要将涉及以下两个内容
有一个文件夹 货物清单 中含有多张货物清单的影印版 PDF,分别命名为 文件 (1).pdf 文件 (2).pdf ... 文件 (20).pdf,如下所示:
PDF 是纯图片类型,里面的文字信息无法手动复制,同时本例中所有的图片都向左旋转 90 度,大致如下图所示(马赛克部分为无关内容):
我们需要做的是 「 获取图中红框部分 TRACKING# 以及 REF2 冒号后的字符串,用 & 连接后重命名这个 PDF 文件 」 !
也就是需要根据每个PDF内容来批量重命名一大堆文件,最终效果如下
本需求是一个批处理问题,即需要对诸多文件执行类型的操作,基本思路是先完成对一份文件的处理,然后借助 glob 模块获取指定路径所有符合要求的文件路径,执行批处理框架,固后面的操作先针对 文件 (1).pdf
需求中最大的难题在于,PDF 是图片类型,无法按常规方法提取文件。解决思路是利用光学字符识别(OCR)将图片中的文字识别出,然后进行后续操作,这里就涉及到一些先后顺序:
将图片向右旋转回正位
截取需要识别的部分图片
将截取的图片交给 OCR 获取字符串
为了完成 OCR,需要在电脑上安装三个软件:
Ghostscript 32 位
ImageMagick 32 位
tesseract-OCR 32 位
三个软件的下载安装没有特殊的地方(tesseract 配置稍复杂但网络有上诸多教程,这里不再赘述),读者可自行搜索下载及配置
首先导入需要的模块:
from wand.image import Image
from PIL import Image as PI import pyocr import pyocr.builders import io import glob import re import os import shutil
具体的模块用途可以参考下面具体代码。其中 wand 和 pyocr 由于是非标准库需要自行额外安装。打开命令行输入:
pip install wand
pip install pyocr
作为测试以及方便后面的实际运行,需求中的 货物清单 这一文件夹可以放在桌面上。为了获取其中的内容首先我们要明确桌面的路径。每个人每台电脑的桌面路径都不相同,如果直接复制当前电脑桌面的路径,更换电脑或者其他用户调试就需要额外修改。可通过下面基于 os 模块的代码获取桌面路径:
# 获取桌面路径包装成一个函数 def GetDesktopPath(): return os.path.join(os.path.expanduser("~"), 'Desktop')
path = GetDesktopPath() + r'货物清单' # 获取 货物清单 文件夹路径
获取配置好的 tesseract 便于后面调用:
tool = pyocr.get_available_tools()[0]
以 文件 (1).pdf 为例,通过 wand 模块将 PDF 文件转化为分辨率为 300 的 jpeg 图片形式:
image_pdf = Image(filename=path + r'文件 (1).pdf', resolution=300)
image_jpeg = image_pdf.convert('jpeg')
将图片解析为二进制矩阵:
image_lst = [] for img in image_jpeg.sequence:
img_page = Image(image=img)
image_lst.append(img_page.make_blob('jpeg'))
用 io 模块的 BytesIO 方法读取二进制内容为图片形式:
new_img = PI.open(io.BytesIO(image_lst[0]))
由于图片现在处于左旋 90 度的水平位,将其转为正位可以用 rotate() 方法,注意该方法是逆时针旋转,因此回正位需要逆时针旋转 270 度。完善上面的代码,并为 new_img.show() 预览图片:
new_img = PI.open(io.BytesIO(image_lst[0])).rotate(270)
new_img.show()
弹出图片并恢复到了正位,接下来分别截取需要提取部位字符串的图片了,尽量让图片中只有需要识别的部分,获取识别出来容易简单处理获得需要的内容 截取图片用 image.crop((left, top, right, bottom)) 四个参数需要反复调试才能确定。首先提取 TRACKING# 部位需要的内容,经确定四个参数分别是 350 600 1350 730,尝试截取和预览图片:
### 解析1Z开头码 left = 350
top = 600
right = 1300
bottom = 730
image_obj1 = new_img.crop((left, top, right, bottom))
image_obj1.show()
截取成功后可以交给 OCR 了,代码为 tool.image_to_string()
txt1= tool.image_to_string(image_obj1) print(txt1)
通过正则提取红框内需要的内容:
req = 'TRACKING #: (.*)' txt1_real = ''.join(re.findall(req, txt1)[0].split()) print(txt1_real)
用同样的办法也可以提取另一个红框的文字:
### 解析C开头码 left = 205 top = 1170 right = 2450 bottom = 1200 image_obj2 = new_img.crop((left, top, right, bottom)) txt2 = tool.image_to_string(image_obj2) req = 'C.d+d' txt2_real = re.findall(req, txt2)[0]
最后将两个字符串和 & 拼接为长字符串,然后通过 os.rename() 完成重命名文件的目的:
file_name = txt1_real + '&' + txt2_real
os.rename(path + r'文件 (1).pdf', path + r'{}.pdf'.format(file_name))
至此我们就完成了需求的一大步,接下来只需要借助 glob 模块遍历目标文件夹,对获取的每一个文件执行上面的操作即可,这样就将全部需求完成,所有的PDF均按照指定字段进行重命名
本文的分享就到这里,上面的 Python办公自动化 案例可以扩展到很多使用场景(核心为提取PDF指定内容+批量重命名),大家可以自己找一些文件测试学习,如果对你有所帮助可以给本文来一波三连~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10