京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:【公众号】
Python技术
Python 对于文件夹或者文件的遍历一般有两种操作方法,一种是至二级利用其封装好的 walk 方法操作:
import os for root,dirs,files in os.walk("/Users/cxhuan/Downloads/globtest/hello"):
for dir in dirs:
print(os.path.join(root, dir))
for file in files:
print(os.path.join(root, file))
上面代码运行结果如下:
/Users/cxhuan/Downloads/globtest/hello/world /Users/cxhuan/Downloads/globtest/hello/.DS_Store
/Users/cxhuan/Downloads/globtest/hello/hello3.txt
/Users/cxhuan/Downloads/globtest/hello/hello2.txt
/Users/cxhuan/Downloads/globtest/hello/hello1.txt
/Users/cxhuan/Downloads/globtest/hello/world/world1.txt
/Users/cxhuan/Downloads/globtest/hello/world/world3.txt
/Users/cxhuan/Downloads/globtest/hello/world/world2.txt
上述程序,将 os.walk 读取到的所有路径 root 、目录名 dirs 与文件名 files ,也就是三个文件数组利用 foreach 循环输出。join方法就是将其路径与目录名或者文件名连接起来,组成一个完整的目录。
另一种是用递归的思路,写成下面的形式:
import os files = list()
def dirAll(pathname):
if os.path.exists(pathname):
filelist = os.listdir(pathname)
for f in filelist:
f = os.path.join(pathname, f)
if os.path.isdir(f):
dirAll(f)
else:
dirname = os.path.dirname(f)
baseName = os.path.basename(f)
if dirname.endswith(os.sep):
files.append(dirname+baseName)
else:
files.append(dirname+os.sep+baseName)
dirAll("/Users/cxhuan/Downloads/globtest/hello") for f in files:
print(f)
运行上面代码,得到的结果和上面一样。
这两种方法都没问题,就是写起来比较麻烦,特别是第二种,一不小心还有可能写出 bug 。
今天我们来介绍第三种方法——利用 glob 模块来遍历文件。
glob 是 python 自带的一个操作文件的模块,以简洁实用著称。由于这个模块的功能比较简单,所以也很容易上手和使用。它主要用来查找符合特定规则的文件路径。使用这个模块来查找文件,只需要用到*、? 和 [] 这三个匹配符:
* : 匹配0个或多个字符;
? : 匹配单个字符;
[] :匹配指定范围内的字符,如:[0-9]匹配数字。
glob.glob 方法主要返回所有匹配的文件路径列表。它只有一个参数 pathname ,定义了文件路径匹配规则,这里可以是绝对路径,也可以是相对路径。
我们可以用 * 匹配零个或者多个字符。
输出目录下的子目录或者文件:
for p1 in glob.glob('/Users/cxhuan/Downloads/globtest/*'):
print(p1)
运行上面代码,会将 globtest 文件夹下仅有的目录输出出来,输出内容如下:
/Users/cxhuan/Downloads/globtest/hello
我们也可以通过制定层级来遍历文件或者文件夹:
for p in glob.glob('/Users/cxhuan/Downloads/globtest/*/*'):
print(p)
上面的代码会遍历 globtest 文件夹以及子文件夹,将所有的文件或文件夹路径打印出来:
/Users/cxhuan/Downloads/globtest/hello/world /Users/cxhuan/Downloads/globtest/hello/hello3.txt /Users/cxhuan/Downloads/globtest/hello/hello2.txt /Users/cxhuan/Downloads/globtest/hello/hello1.txt
我们也可以对文件或者文件夹进行过滤:
for p in glob.glob('/Users/cxhuan/Downloads/globtest/hello/*3.txt'):
print(p)
上面代码值匹配 hello 目录下的文件名末尾为 ‘3’ 的 txt 文件,运行结果如下:
/Users/cxhuan/Downloads/globtest/hello/hello3.txt
我们可以用问号(?)匹配任何单个的字符。
for p in glob.glob('/Users/cxhuan/Downloads/globtest/hello/hello?.txt'):
print(p)
上面的代码输出 hello 目录下的以 ‘hello’ 开头的 txt 文件,输出结果如下:
/Users/cxhuan/Downloads/globtest/hello/hello3.txt /Users/cxhuan/Downloads/globtest/hello/hello2.txt /Users/cxhuan/Downloads/globtest/hello/hello1.txt
我们可以使用 [] 来匹配一个范围:
for p in glob.glob('/Users/cxhuan/Downloads/globtest/hello/*[0-2].*'):
print(p)
我们想要得到 hello 目录下的文件名结尾数字的范围为 0到2的文件,运行上面代码,获得的输出为:
/Users/cxhuan/Downloads/globtest/hello/hello2.txt /Users/cxhuan/Downloads/globtest/hello/hello1.txt
python 的 glob 方法可以对文件夹下所有文件进行遍历,并返回一个 list 列表。而 iglob 方法一次只获取一个匹配路径。下面是一个简单的例子来说明二者的区别:
p = glob.glob('/Users/cxhuan/Downloads/globtest/hello/hello?.*') print(p) print('----------------------')
p = glob.iglob('/Users/cxhuan/Downloads/globtest/hello/hello?.*') print(p)
运行上面代码,结果返回是:
['/Users/cxhuan/Downloads/globtest/hello/hello3.txt', '/Users/cxhuan/Downloads/globtest/hello/hello2.txt',
'/Users/cxhuan/Downloads/globtest/hello/hello1.txt'] ---------------------- <generator
object _iglob at 0x1040d8ac0>
从上面的结果我们可以很容易看到二者的区别,前者返回的是一个列表,后者返回的是一个可迭代对象。
我们针对这个可迭代对象做一下操作看看:
p = glob.iglob('/Users/cxhuan/Downloads/globtest/hello/hello?.*') print(p.__next__()) print(p.__next__())
运行结果如下:
/Users/cxhuan/Downloads/globtest/hello/hello3.txt /Users/cxhuan/Downloads/globtest/hello/hello2.txt
我们可以看到,针对这个可迭代对象,我们一次可以获取到一个元素。这样做的好处是节省内存,试想如果一个路径下有大量的文件夹或者文件,我们使用这个迭代对象不用一次性全部获取到内存,而是可以慢慢获取。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27