京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源: 麦叔编程
作者:麦叔
很多在校生或者自学编程的人表示:我没有项目经验,应该怎么办?
在开源盛行的今天,我们根本不缺乏项目,随便在Github上搜索一下就可以找到成千上万的高质量的项目供你学习和实践。
我们缺乏的是:把开源项目内化的方法,让开源项目变成自己的项目的例子。
本文分享6个内化开源项目的步骤,以及4个加深项目经验的步骤。如果你认真执行这些步骤,项目经验将不再是问题。
一、步子大了容易扯着蛋
这里说的项目是指比较综合的项目,具有一定商业价值的项目,写在简历上可以给你加分的项目,比如:
项目虽好,但我不推荐初学者上来就做这种项目,步子大了容易扯着蛋。
在做项目之前,必须先有一定的编程基础:
否则就算你比着葫芦画瓢把项目运行出来了,项目随便出点问题,你就傻眼了,因为一些基础的知识你都不懂。或者让你做点复杂点的功能,完全没有思路。
所以在实践本文的步骤之前,先掂量一下,自己是否已经有了一定的基础。
并不是说从零开始学习编程就不能实战入门,相反,我非常推崇实战项目入门的方法,所以我在B站分享很多Python,Java的小游戏,小项目的教程:
这些都很适合零基础学习编程,但如果放在简历上就太单薄了。
在B站搜索:麦叔编程,可以查看这些视频。公众号在近期也会开通相关的小程序。
在接下来两周,我会发布学习文章,也是防止扯了蛋:
请保持关注。
如果你已经有了一定的基础,就可以开始找个开源项目,练练手。
找项目的方法很简单,可以去github,或者国内的gitee上,搜索你感兴趣的项目,挑选点赞数比较多的就可以了。
但这里我想提醒一下,一定要循序渐进,找适合自己的项目,并不是点赞多的就是最开始学习。
以Java开源项目为例,我认为要分成几个层次:
再说一遍,我的主要意思是:要循序渐进,找适合自己的项目。
如果你不知道如何循序渐进,在接下来的一两周之内我会发布:
请保持关注。
假设你已经确定了一个开源项目,怎么下手呢?
按照下面的6个步骤来:
架构图示例:
流程图示例:
经过这样的6个步骤,你一定有信心把项目写到自己的简历上。实际上,你可能会比真正有工作经验的人还要表现的好。
我见过很多工作了几年的人,都不能画出自己的项目的架构图,对项目需求一知半解,问到点深入的问题就答不出来。如果你有实际的工作经验,也可以应用上面的几个步骤。
如果你觉得这个几个步骤很好,但还是感觉不知道怎么下手,在接下里一两周,我会选取一个开源项目,带你一步步实践上面的6个步骤。请保持关注。
经过上面的6个步骤,你的项目经验应该没问题了,但是你没有真正的在一个团队中工作过,你没有团队合作经验,这可能会是一个问题。
下面分享的4个步骤帮你获得团队合作经验:
如果你很难找到合作伙伴,我创建了一个“项目实战互助群”,也许这里你能找到你的合作伙伴。请在公众号回复项目加入群聊。
我知道,说起来容易,做起来难!但是不做会更难。
如果下决心,严格执行这些建议,项目经验绝对不会成为你的障碍。
为了更好的帮助大家,在下面的一两周我会推出相关的文章:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20