京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1.线性回归的出现
当被解释变量和解释变量都为连续型,且存在线性关系时,可以采用线性回归对被解释变量进行预测。
多元线性回归的出现是非常自然的,由于在一元线性回归中,因变量只能依赖一个自变量来解释,换一句话说,就是我们 只能在一维空间中来解释世界,这是十分糟糕的,毕竟事物之间的关联是非常复杂的,只用其中一个变量来解释,总是显 得那么苍白和无力。
下面我们就来以“房价”和“客户价值”为因变量,探索一下影响他们的自变量。首先,影响房价的因素有哪些呢?
因此,我们不难发现,在用更多变量来解释因变量,显然会更加全面、丰富、合理和科学。与一元线性回归类似,一个含
有k个自变量的多元线性回归模型可以表示为:
y= Bo+Bixl+B2x2++bx+8
,β,B1,B,,为模型参数,E为误差项,来解释不能被自变量线性关系解释的部分。
多元线性回归的基本假设
1.线性关系假设——线性关系检验
2.线性关系检验——回归系数检验
3.期望为0的假设
(1)假设检验方法:(图形法)可以直接绘制散点图,查看残差是否对称分布在0的两侧;(统计检验)可以用假设检验 中的t检验方法,其原假设为H0:E=0,具体操作将在案例中展示。
(2)假设失效的影响:如果残差的期望不等于0,而等于其他的某个常数,那么这个常数就应该出现在多元线性回归的常 数项内。
(3)假设失效解决方法:如果失效,考虑是否强制将常数项设置为,或考虑异常值问题。
4.同方差假设
假设检验方法:(图形法)对残差以及因变量的拟合值作图。
如果没有异方差,那么残差和因变量拟合值构成的散点应该是完全 随机的,其趋势线应该是几乎是水平的。上图中间的趋势线存在弯 曲,即存在一定的异方差。
除了作图,我们也可以选择Breusch-Pagan检验,注意该检验的原假设是同方差,备择假设是异方差,这 样读者根据输出的P值就可以直观判断了。
假设失效的影响:如果误差是异方差的,那么OLS估计的标准误差将不可靠。
假设失效解决方法:克服异方差性的影响,我们可以尝试对因变量做一些非线性变换,如等等。
5.正态性假设
假设检验方法:(图形法)做QQ图。
QQ图的解读十分简单,如果散点在直线上或者直线附近,那么我 们就可以认为数据是正态分布的,否则就任务不是正态分布。 对于正态分布的统计检验,我们可以选择KS检验(Kolmogorov– Smirnov test),其原假设:数据是正态分布的。这样读者可以直 接根据输出的P值来对检验结果进行分析。
假设失效的影响:如果误差项不是正态分布的,则OLS估计的标准误差将不可靠。然而对于正态性假设对于线性回归的 重要性,目前各方还有一些有价值的观点。
假设失效解决方法:关注样本中两端的异常值是否合理,如异常值不合理,可以考虑删除异常值。也可以尝试对变量做 非线性变换。
6.横截面和时间序列数据在回归建模上的差异
横截面是指在同一时间平面上的数据,例如2013年各个上市公司的财报数据,如果研究其不同变量之间的线性关系,可 以用多元线性回归模型。但是如果数据包含时间趋势,例如2001-2018年全国各个省市的宏观经济指标数据,如果要研 究不同宏观指标之间的线性影响,就要用面板回归模型了(计量模型的一种)。
1.多元线性回归的参数估计
1. 工人月工资(元)依劳动生产率(千元)变化的回归直线方程为y=60+90x,下列判断正确的是( )?
A. 劳动生产率为1000元时,工资为50元
B. 劳动生产率提高1000元时,工资提高150元
C. 劳动生产率提高1000元时,工资提高90元
D. 劳动生产率为1000元时,工资为90元
答案:C 解析:根据回归直线方程 y=60+90x 得到,劳动生产率为1千元时,工人月工资=60+90*1=150元,劳动生产率提高1千元 时,工资提高90元。
2. 以下哪个假设不是线性回归分析的前提假设? A. 解释变量之间必须严格独立
B. 解释变量之间不能强线性相关
C. 扰动项独立同分布
D. 扰动项服从正态分布
答案:A 解析:回归分析的前提假设中,包含解释变量之间非线性相关、扰动项独立同分布,扰动项服从正态分布。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27