
1.线性回归的出现
当被解释变量和解释变量都为连续型,且存在线性关系时,可以采用线性回归对被解释变量进行预测。
多元线性回归的出现是非常自然的,由于在一元线性回归中,因变量只能依赖一个自变量来解释,换一句话说,就是我们 只能在一维空间中来解释世界,这是十分糟糕的,毕竟事物之间的关联是非常复杂的,只用其中一个变量来解释,总是显 得那么苍白和无力。
下面我们就来以“房价”和“客户价值”为因变量,探索一下影响他们的自变量。首先,影响房价的因素有哪些呢?
因此,我们不难发现,在用更多变量来解释因变量,显然会更加全面、丰富、合理和科学。与一元线性回归类似,一个含
有k个自变量的多元线性回归模型可以表示为:
y= Bo+Bixl+B2x2++bx+8
,β,B1,B,,为模型参数,E为误差项,来解释不能被自变量线性关系解释的部分。
多元线性回归的基本假设
1.线性关系假设——线性关系检验
2.线性关系检验——回归系数检验
3.期望为0的假设
(1)假设检验方法:(图形法)可以直接绘制散点图,查看残差是否对称分布在0的两侧;(统计检验)可以用假设检验 中的t检验方法,其原假设为H0:E=0,具体操作将在案例中展示。
(2)假设失效的影响:如果残差的期望不等于0,而等于其他的某个常数,那么这个常数就应该出现在多元线性回归的常 数项内。
(3)假设失效解决方法:如果失效,考虑是否强制将常数项设置为,或考虑异常值问题。
4.同方差假设
假设检验方法:(图形法)对残差以及因变量的拟合值作图。
如果没有异方差,那么残差和因变量拟合值构成的散点应该是完全 随机的,其趋势线应该是几乎是水平的。上图中间的趋势线存在弯 曲,即存在一定的异方差。
除了作图,我们也可以选择Breusch-Pagan检验,注意该检验的原假设是同方差,备择假设是异方差,这 样读者根据输出的P值就可以直观判断了。
假设失效的影响:如果误差是异方差的,那么OLS估计的标准误差将不可靠。
假设失效解决方法:克服异方差性的影响,我们可以尝试对因变量做一些非线性变换,如等等。
5.正态性假设
假设检验方法:(图形法)做QQ图。
QQ图的解读十分简单,如果散点在直线上或者直线附近,那么我 们就可以认为数据是正态分布的,否则就任务不是正态分布。 对于正态分布的统计检验,我们可以选择KS检验(Kolmogorov– Smirnov test),其原假设:数据是正态分布的。这样读者可以直 接根据输出的P值来对检验结果进行分析。
假设失效的影响:如果误差项不是正态分布的,则OLS估计的标准误差将不可靠。然而对于正态性假设对于线性回归的 重要性,目前各方还有一些有价值的观点。
假设失效解决方法:关注样本中两端的异常值是否合理,如异常值不合理,可以考虑删除异常值。也可以尝试对变量做 非线性变换。
6.横截面和时间序列数据在回归建模上的差异
横截面是指在同一时间平面上的数据,例如2013年各个上市公司的财报数据,如果研究其不同变量之间的线性关系,可 以用多元线性回归模型。但是如果数据包含时间趋势,例如2001-2018年全国各个省市的宏观经济指标数据,如果要研 究不同宏观指标之间的线性影响,就要用面板回归模型了(计量模型的一种)。
1.多元线性回归的参数估计
1. 工人月工资(元)依劳动生产率(千元)变化的回归直线方程为y=60+90x,下列判断正确的是( )?
A. 劳动生产率为1000元时,工资为50元
B. 劳动生产率提高1000元时,工资提高150元
C. 劳动生产率提高1000元时,工资提高90元
D. 劳动生产率为1000元时,工资为90元
答案:C 解析:根据回归直线方程 y=60+90x 得到,劳动生产率为1千元时,工人月工资=60+90*1=150元,劳动生产率提高1千元 时,工资提高90元。
2. 以下哪个假设不是线性回归分析的前提假设? A. 解释变量之间必须严格独立
B. 解释变量之间不能强线性相关
C. 扰动项独立同分布
D. 扰动项服从正态分布
答案:A 解析:回归分析的前提假设中,包含解释变量之间非线性相关、扰动项独立同分布,扰动项服从正态分布。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26