
1.线性回归的出现
当被解释变量和解释变量都为连续型,且存在线性关系时,可以采用线性回归对被解释变量进行预测。
多元线性回归的出现是非常自然的,由于在一元线性回归中,因变量只能依赖一个自变量来解释,换一句话说,就是我们 只能在一维空间中来解释世界,这是十分糟糕的,毕竟事物之间的关联是非常复杂的,只用其中一个变量来解释,总是显 得那么苍白和无力。
下面我们就来以“房价”和“客户价值”为因变量,探索一下影响他们的自变量。首先,影响房价的因素有哪些呢?
因此,我们不难发现,在用更多变量来解释因变量,显然会更加全面、丰富、合理和科学。与一元线性回归类似,一个含
有k个自变量的多元线性回归模型可以表示为:
y= Bo+Bixl+B2x2++bx+8
,β,B1,B,,为模型参数,E为误差项,来解释不能被自变量线性关系解释的部分。
多元线性回归的基本假设
1.线性关系假设——线性关系检验
2.线性关系检验——回归系数检验
3.期望为0的假设
(1)假设检验方法:(图形法)可以直接绘制散点图,查看残差是否对称分布在0的两侧;(统计检验)可以用假设检验 中的t检验方法,其原假设为H0:E=0,具体操作将在案例中展示。
(2)假设失效的影响:如果残差的期望不等于0,而等于其他的某个常数,那么这个常数就应该出现在多元线性回归的常 数项内。
(3)假设失效解决方法:如果失效,考虑是否强制将常数项设置为,或考虑异常值问题。
4.同方差假设
假设检验方法:(图形法)对残差以及因变量的拟合值作图。
如果没有异方差,那么残差和因变量拟合值构成的散点应该是完全 随机的,其趋势线应该是几乎是水平的。上图中间的趋势线存在弯 曲,即存在一定的异方差。
除了作图,我们也可以选择Breusch-Pagan检验,注意该检验的原假设是同方差,备择假设是异方差,这 样读者根据输出的P值就可以直观判断了。
假设失效的影响:如果误差是异方差的,那么OLS估计的标准误差将不可靠。
假设失效解决方法:克服异方差性的影响,我们可以尝试对因变量做一些非线性变换,如等等。
5.正态性假设
假设检验方法:(图形法)做QQ图。
QQ图的解读十分简单,如果散点在直线上或者直线附近,那么我 们就可以认为数据是正态分布的,否则就任务不是正态分布。 对于正态分布的统计检验,我们可以选择KS检验(Kolmogorov– Smirnov test),其原假设:数据是正态分布的。这样读者可以直 接根据输出的P值来对检验结果进行分析。
假设失效的影响:如果误差项不是正态分布的,则OLS估计的标准误差将不可靠。然而对于正态性假设对于线性回归的 重要性,目前各方还有一些有价值的观点。
假设失效解决方法:关注样本中两端的异常值是否合理,如异常值不合理,可以考虑删除异常值。也可以尝试对变量做 非线性变换。
6.横截面和时间序列数据在回归建模上的差异
横截面是指在同一时间平面上的数据,例如2013年各个上市公司的财报数据,如果研究其不同变量之间的线性关系,可 以用多元线性回归模型。但是如果数据包含时间趋势,例如2001-2018年全国各个省市的宏观经济指标数据,如果要研 究不同宏观指标之间的线性影响,就要用面板回归模型了(计量模型的一种)。
1.多元线性回归的参数估计
1. 工人月工资(元)依劳动生产率(千元)变化的回归直线方程为y=60+90x,下列判断正确的是( )?
A. 劳动生产率为1000元时,工资为50元
B. 劳动生产率提高1000元时,工资提高150元
C. 劳动生产率提高1000元时,工资提高90元
D. 劳动生产率为1000元时,工资为90元
答案:C 解析:根据回归直线方程 y=60+90x 得到,劳动生产率为1千元时,工人月工资=60+90*1=150元,劳动生产率提高1千元 时,工资提高90元。
2. 以下哪个假设不是线性回归分析的前提假设? A. 解释变量之间必须严格独立
B. 解释变量之间不能强线性相关
C. 扰动项独立同分布
D. 扰动项服从正态分布
答案:A 解析:回归分析的前提假设中,包含解释变量之间非线性相关、扰动项独立同分布,扰动项服从正态分布。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11