京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:早起Python
作者:陈熹、刘早起
有时我们需要将一份或者多份PDF文件中的图片提取出来,如果采取在线的网站实现的话又担心图片泄漏,手动操作又觉得麻烦,其实用Python也可以轻松搞定!
今天就跟大家系统分享几种Python提取 PDF 图片的方法。其实没有非常完美的方法,每种方法提取效率都不是百分之百,因此可以考虑用多种方法进行互补,主要将涉及:
基于 fitz 库和正则搜索提取图片基于 pdf2image 库的两种方法提取图片
fitz 是 pymupdf 的子模块,需要先用命令行安装 pymupdf:
pip install pymupdf
但注意导入时使用 import fitz 导入模块!
下面的代码就利用 fitz 库提取图片需要通过正则匹配图片元素,将模板元素转化为像素后再以图片形式写出
import fitz import re import os
file_path = r'C:xxxxxx.pdf' # PDF 文件路径 dir_path = r'C:xxx' # 存放图片的文件夹 def pdf2image1(path, pic_path):
checkIM = r"/Subtype(?= */Image)" pdf = fitz.open(path)
lenXREF = pdf._getXrefLength()
count = 1 for i in range(1, lenXREF):
text = pdf._getXrefString(i)
isImage = re.search(checkIM, text)
if not isImage:
continue pix = fitz.Pixmap(pdf, i)
new_name = f"img_{count}.png" pix.writePNG(os.path.join(pic_path, new_name))
count += 1 pix = None pdf2image1(file_path, dir_path)
运行提取示例文件后结果如下:
可以看到,有一些很小的色块也被提取成图片,那么怎么过滤掉它们呢?
有一个简单的方法是通过大小过滤,pix 像素在 fitz 库中存在一个重要的方法 pix.size 可以反映像素多少,简单的色素块该值较低,可以通过设置一个阈值过滤。以阈值 10000 为例过滤:
import fitz import re import os
file_path = r'C:xxxxxx.pdf' # PDF 文件路径 dir_path = r'C:xxx' # 存放图片的文件夹 def pdf2image1(path, pic_path):
checkIM = r"/Subtype(?= */Image)" pdf = fitz.open(path)
lenXREF = pdf._getXrefLength()
count = 1 for i in range(1, lenXREF):
text = pdf._getXrefString(i)
isImage = re.search(checkIM, text)
if not isImage:
continue pix = fitz.Pixmap(pdf, i)
if pix.size < 10000: # 在这里添加一处判断一个循环 continue # 不符合阈值则跳过至下
new_name = f"img_{count}.png" pix.writePNG(os.path.join(pic_path, new_name))
count += 1 pix = None pdf2image1(file_path, dir_path)
可以看到,全部图片都被正常提取!
一看名字就知道这个库的用处了,官方文档为https://www.cnpython.com/pypi/pdf2image
可以简单通过 pip install pdf2image 安装,但poppler才是真正起做用的转换器,因此需要额外安装和配置:
“
windows用户必须安装poppler for Windows,然后将bin/文件夹添加到PATHMac用户必须安装poppler for Mac
”
具体发挥作用的代码官方文档也给出了详细的说明:
那么我们就分别尝试这两种方法:
from pdf2image import convert_from_path,convert_from_bytes import tempfile from
pdf2image.exceptions import PDFInfoNotInstalledError,
PDFPageCountError, PDFSyntaxError import os
file_path = r'C:xxxxxx.pdf' # PDF 文件路径 dir_path = r'C:xxx'
# 存放图片的文件夹 def pdf2image2(file_path, dir_path):
images = convert_from_path(file_path, dpi=200)
for image in images:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
image.save(file_path + f'img_{images.index(image)}.png', 'PNG')
pdf2image2(file_path, dir_path)
可以成功提取图片。再试试第二种方法:
from pdf2image import convert_from_path,convert_from_bytes import tempfile from
pdf2image.exceptions import
PDFInfoNotInstalledError, PDFPageCountError, PDFSyntaxError import os
file_path = r'C:xxxxxx.pdf' # PDF 文件路径 dir_path = r'C:xxx' # 存放图片的文件夹 def pdf2image3(file_path,
dir_path): images = convert_from_bytes(open(file_path, 'rb').read())
for image in images:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
image.save(file_path + f'img_{images.index(image)}.png', 'PNG')
pdf2image3(file_path, dir_path)
可以看到结果和之前一致,PDF中全部图片都被提取出来!
再补充一下。核心方法covert_from_bytes包含大量参数,可以自行修改。几个常用参数总结如下:
值得一提的是thread_count 参数,可以启动多线程会大大加快转换速度,尤其是 PDF 页面较多时。有兴趣的读者可以做尝试。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27