
来源:早起Python
作者:陈熹、刘早起
有时我们需要将一份或者多份PDF文件中的图片提取出来,如果采取在线的网站实现的话又担心图片泄漏,手动操作又觉得麻烦,其实用Python也可以轻松搞定!
今天就跟大家系统分享几种Python提取 PDF 图片的方法。其实没有非常完美的方法,每种方法提取效率都不是百分之百,因此可以考虑用多种方法进行互补,主要将涉及:
基于 fitz 库和正则搜索提取图片基于 pdf2image 库的两种方法提取图片
fitz 是 pymupdf 的子模块,需要先用命令行安装 pymupdf:
pip install pymupdf
但注意导入时使用 import fitz 导入模块!
下面的代码就利用 fitz 库提取图片需要通过正则匹配图片元素,将模板元素转化为像素后再以图片形式写出
import fitz import re import os
file_path = r'C:xxxxxx.pdf' # PDF 文件路径 dir_path = r'C:xxx' # 存放图片的文件夹 def pdf2image1(path, pic_path):
checkIM = r"/Subtype(?= */Image)" pdf = fitz.open(path)
lenXREF = pdf._getXrefLength()
count = 1 for i in range(1, lenXREF):
text = pdf._getXrefString(i)
isImage = re.search(checkIM, text)
if not isImage:
continue pix = fitz.Pixmap(pdf, i)
new_name = f"img_{count}.png" pix.writePNG(os.path.join(pic_path, new_name))
count += 1 pix = None pdf2image1(file_path, dir_path)
运行提取示例文件后结果如下:
可以看到,有一些很小的色块也被提取成图片,那么怎么过滤掉它们呢?
有一个简单的方法是通过大小过滤,pix 像素在 fitz 库中存在一个重要的方法 pix.size 可以反映像素多少,简单的色素块该值较低,可以通过设置一个阈值过滤。以阈值 10000 为例过滤:
import fitz import re import os
file_path = r'C:xxxxxx.pdf' # PDF 文件路径 dir_path = r'C:xxx' # 存放图片的文件夹 def pdf2image1(path, pic_path):
checkIM = r"/Subtype(?= */Image)" pdf = fitz.open(path)
lenXREF = pdf._getXrefLength()
count = 1 for i in range(1, lenXREF):
text = pdf._getXrefString(i)
isImage = re.search(checkIM, text)
if not isImage:
continue pix = fitz.Pixmap(pdf, i)
if pix.size < 10000: # 在这里添加一处判断一个循环 continue # 不符合阈值则跳过至下
new_name = f"img_{count}.png" pix.writePNG(os.path.join(pic_path, new_name))
count += 1 pix = None pdf2image1(file_path, dir_path)
可以看到,全部图片都被正常提取!
一看名字就知道这个库的用处了,官方文档为https://www.cnpython.com/pypi/pdf2image
可以简单通过 pip install pdf2image 安装,但poppler才是真正起做用的转换器,因此需要额外安装和配置:
“
windows用户必须安装poppler for Windows,然后将bin/文件夹添加到PATHMac用户必须安装poppler for Mac
”
具体发挥作用的代码官方文档也给出了详细的说明:
那么我们就分别尝试这两种方法:
from pdf2image import convert_from_path,convert_from_bytes import tempfile from
pdf2image.exceptions import PDFInfoNotInstalledError,
PDFPageCountError, PDFSyntaxError import os
file_path = r'C:xxxxxx.pdf' # PDF 文件路径 dir_path = r'C:xxx'
# 存放图片的文件夹 def pdf2image2(file_path, dir_path):
images = convert_from_path(file_path, dpi=200)
for image in images:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
image.save(file_path + f'img_{images.index(image)}.png', 'PNG')
pdf2image2(file_path, dir_path)
可以成功提取图片。再试试第二种方法:
from pdf2image import convert_from_path,convert_from_bytes import tempfile from
pdf2image.exceptions import
PDFInfoNotInstalledError, PDFPageCountError, PDFSyntaxError import os
file_path = r'C:xxxxxx.pdf' # PDF 文件路径 dir_path = r'C:xxx' # 存放图片的文件夹 def pdf2image3(file_path,
dir_path): images = convert_from_bytes(open(file_path, 'rb').read())
for image in images:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
image.save(file_path + f'img_{images.index(image)}.png', 'PNG')
pdf2image3(file_path, dir_path)
可以看到结果和之前一致,PDF中全部图片都被提取出来!
再补充一下。核心方法covert_from_bytes包含大量参数,可以自行修改。几个常用参数总结如下:
值得一提的是thread_count 参数,可以启动多线程会大大加快转换速度,尤其是 PDF 页面较多时。有兴趣的读者可以做尝试。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10