京公网安备 11010802034615号
经营许可证编号:京B2-20210330
耗时8年,历经3次成员国领导人会议、19次部长级会议,28轮正式谈判……《区域全面经济伙伴关系协定》在15国领导人共同见证下,(RCEP)终于签订。
据悉,RCEP的正式签署意味着一个覆盖人口超22亿、GDP规模、贸易总量均占全球近30%的“超级自贸区”就此诞生。
这是东亚区域经济一体化进程的重大里程碑,为受到疫情重创的国家乃至世界经济复苏注入新动力。
图片来源:央视新闻
中国加入全球最大的自贸区,有着重大且积极的影响。除了切实享受进口零关税产品外,RCEP框架之下中国外贸就业市场也将激活,使得更多人在这条产业链上获得工作机会,提高国内的就业率。
国家为谋求发展,尽心尽力到了这个地步,却还有人每个月都拿着不到5K工资,而且令人意外的是,这样的人还真不少。
据悉,中国的网民圈子规模已高达9.04亿,不过其中有2/3的人群工资低于5k,即:国内有6.5亿网民月薪不到5K。
当然月薪偏低,问题不一定全部出自本人身上,也有可能是受到地域、行业等的影响和局限。所以,如果你无法改变自己的出身,那就试着改变自己的环境和能力吧!
想要突破的朋友,可以试着从以下几个维度去探索、思考该如何努力做,才能脱离低薪的阶层。
1、选择对的行业
随着职场竞争白热化,企业招人越来越苛刻,与其碰壁丧失斗志,不如先考察国内哪些行业前景佳,竞争压力却相对较小,降低外界环境带来伤害的程度。
拿数据分析行业来说,2020年中国大数据行业人才需求规模预计将达210 万,未来5年其需求将保持30%-40%的增速。
市场迫切需要数据分析人才,但国内高校尚未形成输出规模,因此行业竞争压力远没想象中激烈,是职场人转行或应届毕业生就职不错的选择。
2、学会寻求帮助
除自己坚持外,我们也需外界适当的鼓励和支持,谁都有软弱和彷徨,这个时候寻求朋友、老师或家人的帮助是必要的!
正如,我们在与众多CDA学员交流中发现,多与老师沟通,遇见困难多和同学交流,能更有效重拾信心。
CDA数据分析就业班学员小李,因反复经历投简历、做题、面试、被拒绝而十分痛苦,快放弃时他主动寻求了CDA就业服务老师帮助。
CDA学员反馈
在CDA老师引导和激励下,小李调整心态,最终顺利进入某科技有限公司,担任商业数据分析师一职。
3、正确定位方向
人生在世无法事事顺意,与其到中年才苦苦挣扎,不如趁年轻试错时间和空间都广阔时,坚持一下。
当然,辞职适当休息无可厚非,但请告诉自己,不要忘记自我提升,抽时间学习新技能和新知识。
如今的职场,系统学习数据分析技能非常必要,如Python办公自动化和数据分析都是极好的,可助你避开各种职场危机。
所谓“民强则国强”,我们生在一个发展中国家,机遇和挑战并存。想要提升自我,拿高薪就一定要找对方法,不断突破自我,找到自己人生的价值,和国家一起强大。
拿高薪的课程推荐
为传授符合企业标准的实用数据分析技术,CDA从理论知识到实际应用,结合金融、电商、互联网等热门行业的精选案例,帮助学员成为企业抢手人才。
同时,课程拥有强大师资阵容,由至少10位以上相关领域的专家进行教授,适合每一个你。
同时,CDA就业班为成功毕业的学员,开通了就业直通车,为其推荐相关工作单位。另外,报名参加CDA数据分析师培训课程的学员或企业,还可申请政府补贴,每人每年合计最高可达1万元,具体的补贴标准请详细咨询哦!
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20