京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:AirPython
作者:星安果
1. 前言
微服务架构下,由于各类服务开发进度的不一致,导致联调工作经常会存在不确定性,进而导致项目延期
在实际工作中,为了保证项目进度,我们经常需要针对部分未完成模块及不稳定模块采用 Mock 方式,以验证已开发完的模块
本篇文章将介绍 Python 实现 Mock 的几种常见方式
Mock 测试:在测试验证过程中,对于那些尚未完成或不稳定的对象,用一个虚拟对象来替代,以便测试的测试方法
因此,这个虚拟的对象是 Mock 对象,Mock 对象是真实对象在调试期间的代替品
它的优势包含:
在 Python 3.3 之前使用 mock,需要先安装依赖
# 安装mock依赖
pip3 install mock
假设 Product 类中有 2 个方法
其中,get_product_status_by_id 方法还没有实现;buy_product 方法依赖于
get_product_status_by_id 方法的返回值
# product_impl.py
class Product(object):
def __init__(self):
pass
def get_product_status_by_id(self, product_id):
"""
通过商品id获取产品信息(Mock)
:return:
"""
# 待实现查询数据库的业务逻辑
pass
def buy_product(self, product_id):
"""
购买产品(真实逻辑)
:return:
"""
# 产品信息
# {"id":1,"name":"苹果","num":23}
product = self.get_product_status_by_id(product_id)
if product.get("num") >= 1:
result = {"status": 0, "msg": "购买成功!"}
else:
result = {"status": 1, "msg": "购买失败,库存不足!"}
return result
Mock 的步骤如下:
导入使用 mock 中的 patch 方法作为测试方法的装饰器,对 get_product_status_by_id
方法进行 Mock,方法参数为 Mock 对象测试方法中,对该 Mock 对象设置一个返回值调用并断言from
mock import patch from mock_.product_impl import Product @patch('mock_.product_impl
.Product.get_product_status_by_id') def test_succuse(mock_get_product_status_by_id):
# Mock方法,指定一个返回值 mock_get_product_status_by_id.return_value =
{"id": 1, "name": "苹果", "num": 23}
product = Product()
assert product.buy_product(1).get("status") == 0 需要注意的是,
Mock 此方法的时候,必须制定该方法的完整路径使用 @patch.object 同样能完成 Mock,
不同的是,@patch.object 包含 2 个参数第一个参数为该方法所在的类;第二个参数为方法名from
mock import patch from mock_.product_impl import Product # Mock一个方法 # @patch.object:
对象、方法名 @patch.object(Product, 'get_product_status_by_id') def test_succuse
(mock_get_product_status_by_id):
# Mock方法,指定一个返回值 mock_get_product_status_by_id.return_value =
{"id": 1, "name": "苹果", "num": 23}
product = Product()
assert product.buy_product(1).get("status") == 0
Python 3.3 之后,mock 作为标准库,已经内置到 unittest 中了
还是以 3.1 的场景为例,使用 unittest 编写一个测试用例
Mock 步骤如下:
import unittest
from unittest import mock
from unittest_mock.product_impl import Product
class TestProduct(unittest.TestCase):
def test_success(self):
# 成功结果
mock_success_value = {"id": 1, "name": "苹果", "num": 23}
product = Product()
product.get_product_status_by_id = mock.Mock(return_value=mock_success_value)
# 调用实际函数
assert product.buy_product(1).get("status") == 0
if __name__ == "__main__":
unittest.main()
相比 unittest,pytest 由于强大的插件支持,用户群体可能更大!
如果项目本身使用的框架是 pytest,则 Mock 更建议使用 pytest-mock 这个插件
# pytest依赖
pip3 install pytest
Mock 步骤如下:
import pytest
from pytest_mock_.product_impl import Product
def test_buy_product_success(mocker):
"""
购买成功Mock
:param mocker:
:return:
"""
# 实例化一个产品对象
product = Product()
# 对Product中的方法的返回值进行Mock
mock_value = {"id": 1, "name": "苹果", "num": 23}
# Mock方法
# 注意:需要指定方法的完整路径
# mocker.patch 的第一个参数必须是模拟对象的具体路径,第二个参数用来指定返回值
product.get_product_status_by_id = mocker.patch("product_impl.Product.get_product_status_by_id",
return_value=mock_value)
# 调用购买产品的方法
result = product.buy_product(1)
assert result.get("status") == 0
需要注意的是,mocker.patch 方法第一个参数必须是 Mock 对象的完整路径
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20