
不知道你有没有看过这样的一句话:
15岁觉得游泳难,放弃游泳,
18岁遇到一个你喜欢的人约你去游泳,你只好说“我不会”。
18岁觉得英文难,放弃英文,28岁出现一个很棒但要会英文的工作,你只好说“我不会”。
人生前期越嫌麻烦,越懒得学,后来就越可能错过让你动心的人和事,错过新风景。
转行这个词,我常常听到身边的朋友谈起,很多人对于转行非常的敏感。比如,我的一位好友在一个行业已经待了三年,突然遇到了发展瓶颈,想要转行,那对于他来说可能是一件很难的事情,因为他不仅要考虑学习能力、还要考虑家庭。
但是如果这个行业真的已经没有你施展空间,薪资也无法上涨,那你可能真的要重新规划自己的努力方向了。
互联网时代,谁都希望能拥有一份高薪又有前景的工作!现如今大数据与人工智能热潮,相信会有很多对数据分析感兴趣的小伙伴。但是对于数据分析的零基础小白们,他们并不知道进入数据分析行业需要学什么,也不太清楚数据分析师平时工作都在干什么。今天特意给大家一些建议,希望对你们有所启发。
(1)数学与统计基础:数据分析是运用统计方法和分析工具对大量数据进行分析,挖掘出其潜在规律及价值,为经营决策提供科学严谨的理性依据。
(2)运用分析工具:基础工具我们需要掌握Excel与统计分析工具SPSS的用法。
(3)SQL数据库语言:数据的存储便离不开使用数据库,需掌握SQL数据库语言在关系型数据库系统中进行增删改查等操作才行。
(4)数据挖掘、机器学习:这部分可以选择性学习。主要是了解数据挖掘和机器学习的基本概念和理论。比如:分类、聚类、回归、决策树、贝叶斯定理等。
(1)数据采集端:主要负责采集相关数据,这些数据既可以来自埋点,也可以来自爬虫】。
(2)数据工程端:主要负责结构化存储海量数据,使得采集到的数据以及历史数据以最优化的方式被存储以及调用,涉及到的知识点在于数据库方面,从最基础的SQL到Hadoop集群、分布式存储、NoSQL等。
(3)数据分析端:主要负责将待挖掘的数据清洗、挖掘、分析,给出数据背后的洞察和建议,此方向又可细分为偏业务的数据分析和偏技术的数据挖掘。
(1)数据挖掘工程师:看重数据技术,比如统计学基础、数据库操作(SQL等)编程基础(python等)、机器学习基础(分类模型等)。
(2)算法工程师:看重理论基础,比如机器学习算法原理、相关数学原理等。算法工程师的主要工作一般是研究算法、为公司的相关业务需求优化算法。
4.如何学习
这里的话,推荐大家可以看下我们平时的一些免费视频、资料,如果非常感兴趣,可以咨询小编哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22