京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多人掌握了大多数的分析工具和技能,仍然做不好数据分析。面对业务时还是会两眼一抹黑,啥也不知道。
做数据分析光靠技能和工具是不够的。还必须拥有数据思维,如何搭配这些分析方法?如何得出结论?
数据粉丝思维究竟是什么样的,我们一起聊一下吧。
1. 对比思维
日常生活中我们常常会遇到,例如今天我去超市看到了7块钱1斤的苹果,但是隔壁却卖6块一斤,你是不是会去隔壁看一下。他们之间有什么区别,为什么会贵出这一元钱。
从这个例子中可以看出,对比通常有两个方向,一个纵向,是指不同类的对比。一个是横向,是指与同类相比。
2.结构思维
很多人在做数据分析的时候没有思路,不知道从何下手,这就是缺少结构化思维的表现。
1.按业务职能结构划分:比如渠道,运营,功能等相关模块,简单快速的沟通,能快速的定位问题原因,但是缺点是分析结果不够直接,依赖外部资源信息搜集。
2.按因果结构划分:通过定位指标波动,定位最细指标,辅助维度下转,能够清楚的问题原因,该方式是较为稳妥的方式,是日常工作中的主要方式,但是缺点是需要构建相对完整的指标逻辑体系。
我们在思考问题的时候,习惯用点对点的方式,想到一点就是一点也就是说是乱打枪,也许有可能你可以凭借着经验找到原因但是大多数情况下,你很难找到完全穷尽的原因,也就是为什么你的数据分析总是没思路。
3.分类对比
这里我们可以划分为客户群体、产品归类、市场分级、绩效评价等,许多事情都需要有分类的思维。到底分类思维怎么应用呢?
关键点在于分类后的事物,需要在核心指标上拉开距离!也就是说分类后的结果,必须是显著的。运营当中关注的核心指标,分类后的对象,你能看到他们的分布不是随机的,而是有显著的集群的倾向。
4.可衡量
好的分析思维,我们要想清楚如何衡量效果?也要考量和现实之间的差距,中间的可操作性。
有想法不会操作:那就学工具、学方法论、学算法,开始先用excel来跑通操作,后面再去学习python。
会操作没有想法:那就学方法论、学思维,好好思考方法论、业务、算法之间的关系。
以上总计了数据分析的4种思维,分别是对比、结构、分类、可衡量,无论是生活还是工作,运用好这些分析方法,相信你一定可以创造出更多的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24