京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小伍哥
来源:AI入门学习
python内置一系列强大的字符串处理方法,但这些方法只能处理单个字符串,处理一个序列的字符串时,需要用到循环。那么,有没有办法,不用循环就能同时处理多个字符串呢,pandas的向量化操作就提供了这样的方法。
向量化的操作使我们不必担心数组的长度和维度,只需要关系操作功能,尤为强大的是,除了支持常用的字符串操作方法,还集成了正则表达式的大部分功能,这使得pandas在处理字符串列时,具有非常大的魔力。
例如,要计算每个单词中‘a’的个数,下面一行代码就可以搞定,非常高效。
假如用内置的字符串函数进行操作,需要进行遍历,且Python原生的遍历操作无法处理缺失值。
#用循环进行处理
#存在缺失值时,打印报错
Pandas的向量化操作,能够正确的处理缺失值,无报错信息,如下:
通过上面的例子,对向量化进行简单总结,向量化是一种同时操作整个数组而不是一次操作一个元素的方法,下面从看看具体怎么应用。
向量化的字符方法
Pandas的字符串属的方法几乎包括了大部分Python的内置字符串方法(内置共有45个方法),下面将列举一些常见的方法的用法,例如上面的count()方法将会返回某个字符的个数,而len方法将会返回整个字符的长度。
下面选取部分函数举例,其他函数参考字符串模块:Python字符串的45个方法详解
len()
lower()
zfill()
右对齐,前面用0填充到指定字符串长度。
向量化的正则表达式
Pandas的字符串方法根据Python标准库的re模块实现了正则表达式,下面将介绍Pandas的str属性内置的正则表达式相关方法。
split()
split,按指定字符分割字符串,类似split的方法返回一个列表类型的序列
#按数字分割
切分后的列表中的元素可以通过get方法或者 [] 方法进行读取
使用expand方法可以轻易地将这种返回展开为一个数据表。
同样,我们也可以限制切分的次数:
rsplit()
rsplit与split相似,不同的是,这个切分的方向是反的。即,从字串的尾端向首段切分。
replace ()
replace方法默认使用正则表达式
findall()
提取聊天记录中的QQ号
其他向量化的方法
除了上面介绍的Pandas字符串的正常操作和正则表达式外,Pandas的str属性还提供了其他的一些方法,这些方法非常的有用,在进行特征提取或者数据清洗时,非常高效,具体如下:
wrap()
pad()
slice()
get()
slice_replace()
切片替换
get_dummies()
另一个需要好好解释的是get_dummies()方法,举个例子:假如我们用A,B,C,D来表示一个人的某个特征:
repeat()
cat()
作用:连接字符串
用法:Series.str.cat(others=None, sep=None, na_rep=None)
参数:
返回值: concat : 序列(Series)/索引(Index)/字符串(str)
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12