
作者:小伍哥
来源:AI入门学习
python内置一系列强大的字符串处理方法,但这些方法只能处理单个字符串,处理一个序列的字符串时,需要用到循环。那么,有没有办法,不用循环就能同时处理多个字符串呢,pandas的向量化操作就提供了这样的方法。
向量化的操作使我们不必担心数组的长度和维度,只需要关系操作功能,尤为强大的是,除了支持常用的字符串操作方法,还集成了正则表达式的大部分功能,这使得pandas在处理字符串列时,具有非常大的魔力。
例如,要计算每个单词中‘a’的个数,下面一行代码就可以搞定,非常高效。
假如用内置的字符串函数进行操作,需要进行遍历,且Python原生的遍历操作无法处理缺失值。
#用循环进行处理
#存在缺失值时,打印报错
Pandas的向量化操作,能够正确的处理缺失值,无报错信息,如下:
通过上面的例子,对向量化进行简单总结,向量化是一种同时操作整个数组而不是一次操作一个元素的方法,下面从看看具体怎么应用。
向量化的字符方法
Pandas的字符串属的方法几乎包括了大部分Python的内置字符串方法(内置共有45个方法),下面将列举一些常见的方法的用法,例如上面的count()方法将会返回某个字符的个数,而len方法将会返回整个字符的长度。
下面选取部分函数举例,其他函数参考字符串模块:Python字符串的45个方法详解
len()
lower()
zfill()
右对齐,前面用0填充到指定字符串长度。
向量化的正则表达式
Pandas的字符串方法根据Python标准库的re模块实现了正则表达式,下面将介绍Pandas的str属性内置的正则表达式相关方法。
split()
split,按指定字符分割字符串,类似split的方法返回一个列表类型的序列
#按数字分割
切分后的列表中的元素可以通过get方法或者 [] 方法进行读取
使用expand方法可以轻易地将这种返回展开为一个数据表。
同样,我们也可以限制切分的次数:
rsplit()
rsplit与split相似,不同的是,这个切分的方向是反的。即,从字串的尾端向首段切分。
replace ()
replace方法默认使用正则表达式
findall()
提取聊天记录中的QQ号
其他向量化的方法
除了上面介绍的Pandas字符串的正常操作和正则表达式外,Pandas的str属性还提供了其他的一些方法,这些方法非常的有用,在进行特征提取或者数据清洗时,非常高效,具体如下:
wrap()
pad()
slice()
get()
slice_replace()
切片替换
get_dummies()
另一个需要好好解释的是get_dummies()方法,举个例子:假如我们用A,B,C,D来表示一个人的某个特征:
repeat()
cat()
作用:连接字符串
用法:Series.str.cat(others=None, sep=None, na_rep=None)
参数:
返回值: concat : 序列(Series)/索引(Index)/字符串(str)
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27