
作者:豌豆花下猫
来源:Python猫
花下猫语:最近我发现了一个《Python behind the scenes》系列文章,它计划深度地剖析python 幕后的 CPython 解释器的工作原理。作者专门建了一个网站来发布该系列文章,目前已发布 4 篇。这些文章都挺长的,想要翻译好,并不容易。而本文接下来的内容,是该作者分享的一篇简短的参考材料,我先翻译出来热热身~~
原文:https://tenthousandmeters.com/materials/python-behind-the-scenes-a-list-of-resources
作者:Victor Skvortsov
译者:豌豆花下猫(“Python猫”公众号作者)
声明:本翻译是出于交流学习的目的,基于 CC BY-NC-SA 4.0 授权协议。为便于阅读,内容略有改动。
在研究 CPython 以及写作《CPython behind the scenes》系列时,我发现了一些很有用的文档、帖子和演讲。它们确实是一些非常好的资源,但是并不能回答我的太多问题。这就是为什么我最终决定要分享自己在学习 CPython 源代码时的经验。
>> Python 文档。在所有与 Python 相关的主题上,Python 文档几乎都是第一的查阅选择。虽然它缺少涵盖解释器原理的特殊内容,但是 Python/C API 文档描述了 CPython 的公共接口和一些实现细节。它附录了一份《the tutorial for C programmers》,该教程展示了如何使用 C 语言来扩展 Python 程序,或者将 Python 嵌入到 C 应用程序中。我敢打赌,只要认真地完成这些阅读内容,你就会对 CPython 的工作原理相当地了解。
>> PEP。虽然没有哪个 PEP 描述了解释器的总体设计,但是对 Python 的大多数主要更改,都有相应的提案。PEP 很赞。它们提供了技术和历史的背景。文档的作者们习惯于适当地引用相关的 PEP。例如,Python/C API 的参考内容中至少提到了一次 PEP-432,描述了 CPython 新的初始化序列的转变,以及 PEP-587(这是其部分的实现)。
>> Obi Ike-Nwosu 写的《 Inside The Python Virtual Machine》一书。在我看来,它是关于 CPython 内部原理的最全面、最准确的资料。
>> Anthony Shaw 写的《Your Guide to the CPython Source Code》。这个标题不言而喻。如果想直接研究源代码,你应该选择它!
>> Philip Guo 写的《CPython internals: A ten-hour codewalk through the Python interpreter source code》。如果你想要更为简单的介绍,那么这些讲座视频可能是最好的开始。它们基于 CPython 2.7,但是原理保持不变。
>> Yaniv Aknin 写的《Python’s Innards series》,介绍的是 CPython 3 VM 的早期版本,但仍然非常有用。
>> Eli Bendersky 写的《Python internals》文章。关于符号表(symbol table)的帖子特别好。
>> Stupid Python Ideas 博客。有各种 Python 相关主题的文章。有些涉及 CPython 内部原理。强烈推荐,但可能不好检索。
>> Allison Kaptur 写的《A Python Interpreter Written in Python》。它介绍了一个玩具版 Python VM,能够执行真正的 Python 字节码。这作为解释器的入门介绍,可能会很有用。但是,我觉得不必要花大量时间研究一个玩具示例,因为 CPython 本身并没有那么复杂。
>> Eric Snow 的演讲《To GIL or not to GIL》。它的主题是子解释过程。我喜欢它的地方是 Eric 在开头描述 CPython 架构的方式。
参考材料:
1、Python behind the scenes (https://tenthousandmeters.com/)
2、the tutorial for C programmers (https://docs.python.org/3.9/extending/index.html#extending-index)
3、Inside The Python Virtual Machine (https://leanpub.com/insidethepythonvirtualmachine)
4、Your Guide to the CPython Source Code (https://realpython.com/cpython-source-code-guide/)
5、CPython internals: A ten-hour codewalk through the Python interpreter source code (https://www.youtube.com/playlist?list=PLzV58Zm8FuBL6OAv1Yu6AwXZrnsFbbR0S)
6、Python’s Innards series (https://tech.blog.aknin.name/category/my-projects/pythons-innards/)
7、Python internals (https://eli.thegreenplace.net/tag/python-internals)
8、Stupid Python Ideas (http://stupidpythonideas.blogspot.com/)
9、A Python Interpreter Written in Python (http://aosabook.org/en/500L/a-python-interpreter-written-in-python.html)
10、To GIL or not to GIL (https://www.youtube.com/watch?v=7RlqbHCCVyc)
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10