京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
作者:Mika
数据:真达
后期:Mika
【导读】
Show me data,用数据说话
今天我们聊一聊 《演员请就位2》,最近开播的国综里面,热度最高的一定是《演员请就位》了。从第一季起这部综艺就话题不断,金句频出,前有李诚儒老师的“如坐针毡,如芒刺背,如鲠在喉”;这一季,李诚儒老师再出金句,“味同嚼蜡,味如鸡肋,如此乏味”一度刷爆网络。
《演员请就位2》导师方面,除了上一季的陈凯歌、赵薇、郭敬明,还有这季加入的尔冬升导演,阵容上就十分有看点。参加的演员方面也有胡杏儿、黄奕、娄艺潇等熟悉的身影。
《演员2》一开播就热搜话题不断,无论是李诚儒老师、尔冬升导演的犀利点评,郭敬明给演技小白何昶希发S卡都能引起大量的讨论。
我们今天就用Python分析了《演员2》的视频弹幕,看看大家都在吐槽些什么。
01、豆瓣6.5分 《演员2》为啥差强人意?
《演员请就位》目前为止已经播出了两季,第一季在豆瓣为6.8分,共有4万余人评分。
而目前正在播出的第二季,已有1万9千多人评分,分数为6.5分,比上一季还低了0.3分。
分数占比
我们用Python分析了豆瓣的500条热评数据,从评分分布可以看到:
分数占比方面,37%的人给出1星,20.8%的人给出2星。给出5星好评的仅有5%。
豆瓣短评
那么短评中都在说些什么呢?
从评价词云图中可见,话题主要集中在郭敬明、尔冬升、陈凯歌、李诚儒几位嘉宾上。这也是《演员2》被诟病的一点,嘉宾导师比参赛的演员更出圈,更有话题。此外,"节目"、"演技"、"点评"等也是短评中常出现的。
导演提及
几位嘉宾导师中,谁被提到的次数最多呢?
进一步分析可见,郭敬明占据着最高的话题度,其次是尔冬升和陈凯歌。
导演评价
在对导演和主持嘉宾的评价也十分有意思,对郭敬明的差评达到60.66%,超过的半数,好评仅为14.22%。这与尔冬升的评价差距很大,后者的差评仅为28.83%,好评度也是最高的,达到了29.73%。而有趣的是,作为主持人的大鹏差评度居然比郭敬明还高,达到了67.27%。
02、分析45万条弹幕数据,看看大家都在吐槽什么
我们使用Python获取并分析了《演员请就位2》的腾讯弹幕数据,分析了目前播放的前五期。
1.1 数据读入
首先导入所需库。
# 导入库 import os import jieba import numpy as np import pandas as pd from pyecharts.charts import Bar, Pie, Line, WordCloud, Page from pyecharts import options as opts from pyecharts.globals import SymbolType, WarningType WarningType.ShowWarning = False import stylecloud from IPython.display import Image # 用于在jupyter lab中显示本地图
使用pandas循环读取数据。
# 读入数据 data_list = os.listdir('../data/') df_all = pd.DataFrame() for i in data_list: # print(i) df_one = pd.read_csv(f'../data/{i}', engine='python', encoding='utf-8', index_col=0) df_all = df_all.append(df_one, ignore_index=False) df_all.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 449762 entries, 0 to 44317 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 episodes 449762 non-null object 1 comment_id 449762 non-null int64 2 oper_name 183066 non-null object 3 vip_degree 449762 non-null int64 4 content 449762 non-null object 5 time_point 449762 non-null int64 6 up_count 449762 non-null int64 dtypes: int64(4), object(3) memory usage: 27.5+ MB
共获取了前五期449762条弹幕数据。字段主要包括:期数、评论id、用户名、vip等级、评论内容、评论时间点和点赞数,数据预览如下:
df_all.head()
1.2 数据预处理
# 删除弹幕角色 df_all['content'] = df_all['content'].str.replace('(.*?:)', '') df_all.head()
1.3 数据可视化
弹幕走势图
先看到视频弹幕走势图,从数量上可以看到,弹幕数量前三的分别是:第一期上、第三期上、第五期上。而第一期下和第五期下的弹幕较少。
df_epinum = df_all['episodes'].value_counts().reset_index()
df_epinum['num'] = [1, 5, 3, 7, 6, 8, 4, 9, 2, 10]
df_epinum = df_epinum.sort_values('num')
df_epinum
x_data = df_epinum['index'].tolist()
y_data = df_epinum['episodes'].tolist()
# 条形图
bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar1.add_xaxis(xaxis_data=x_data)
bar1.add_yaxis('', y_axis=y_data)
bar1.set_global_opts(title_opts=opts.TitleOpts(title='前五期的弹幕数走势图'),
visualmap_opts=opts.VisualMapOpts(max_=60000, is_show=False) ) bar1.render()
人物弹幕词云
我们接着再分别看到几位导演导师的弹幕词云。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27