京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2020年应届高校毕业生突破新高874万,恰逢邂逅到疫情导致招聘岗位的数量大幅缩减,大批应届生涌入就业市场,让池子里求职者的竞争激烈值飙升。
2020年找工作可用3个字形容:难!难!难!可想而知,2021年就业压力将何等空前巨大。
然而,这里有一个新兴的产业,其行业薪资平均水平高、就业竞争力相对小……HR却常常因招不到人而烦恼。
据人力资源和社会保障部发布的《新职业—大数据工程技术人员就业景气现状分析报告》显示,2020年中国大数据行业人才需求规模将达210万。
未来5年,需求仍会保持30%-40%的增速,需求总量大概在2000万人左右。
现如今,各大高校纷纷新增大数据相关专业,近5年数据科学与大数据技术已成新增数量最多专业,2020年新增高校更是达到了全国1/4。
然而,“远水解不了近渴”,截止目前大数据及数据分析人才的输出还未形成一定规模。
迫切的市场需求,让企业面试数据分析及赋能等岗位时,会更注重实操能力,从而推动国内数据分析类职业教育培训行业蓬勃发展。
通过几个月的脱产或远程的系统学习,很多人投身成为专门从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。
靠着毅力和努力,无论科班生还是零基础者,都可掌握一定的能力和知识。这时,面试中针对自身情况运用些技巧,便可从众多求职者中脱颖而出,提升收获大厂offer的成功率。
今天,分享些资深数据分析HR总结的面试技巧,具体谈谈面试前、中、后,求职者该做什么?怎么做才能事半功倍?
——面试前
明确定位
具体工作内容及想从事哪块
找工作方向
▪ 数据整理:数据获取、清洗、转换、集成;
▪ 数据建模:构建数据模型,完成算法设计;
▪ 数据分析:挖掘数据的商业价值并分析;
▪ 可视化:对数据分析结果进行可视化展示;
▪ 报告撰写:撰写数据分析报告;
内容模板一
▪ 熟练SQL语言从数据库提取数据;
▪ 熟练使用数据可视化工具;
▪ 能够撰写数据分析报告。
内容模板二
▪ 业务能力:熟悉行业及周边的业务知识;
▪ 管理经验:熟练企业管理和数据应用结合;
▪ 数据分析能力:精通数据分析原理及方法;
▪ 综合能力:较强沟通能力及项目管理能力;
▪ 设计能力:较好BI与数据仓库架构设计能力;
自我评价
个人能力框架的范围
几个维度:
▪ 是否具备数据分析相关项目经验?
▪ 熟练操作哪些常见数据分析工具?
▪ 是否对数据敏感敏感?
▪ 是否拥有较强的多重逻辑思考能力?
▪ 思维是否习惯结构化?
▪ 是否能快速适应新环境和团队?
▪ 可承受较大劳动强度,接受出差?
面试时
常见问题
常规类
Q:请自我介绍一下?
A:不要只说姓名、年龄、爱好、工作经验等简历上有显示的。
▷ HR温馨提示:
提前准备好,涵盖自己与众不同甚至独一无二之处,同时保留某些不突出或中庸点,介绍不宜过长,在60s内即可。
----------------
Q:你工作上有什么业绩?
A:说到业绩,很多人会把之前出色的部分一股脑全说,生怕面试官不知道你有多优秀。
▷ HR温馨提示:
说成果无可厚非,但务必先了解面试的公司,摸清自己适合该岗位的原因,并针对性在每份工作中,挑出匹配度较高的工作成果。
----------------
Q:你对薪资的要求?
A:这个问题愁死了很多英雄汉,要求太低自己过不去,要求太高又怕公司用不起。
▷ HR温馨提示:
不管工作岗位和内容是否符合,必然会涉及到薪酬,建议可要求行业内的平均工资。另外,在复试结束时,务必询问目标岗位薪酬体系和KPI考核细节。
----------------
Q:你能接受加班吗?
A:很多问的公司,并不证明一定要加班,只是想测试你是否愿意为公司奉献。
▷ HR温馨提示:
先明确上下班时间及加班的原因,陈述自己会全身心投入工作,并不断提高工作效率,积极主动的完成好自己的工作。
----------------
Q:上一家公司离职的原因是?
A:就算在上个工作受了再大委屈,都千万不要口出怨言,尤其要避免对管理层的批评。
▷ HR温馨提示:
客观陈述就好,如:工作没发展空间,工作与自己的职业规划不合等,回答要积极正面。
----------------
Q:你还有其他问题要问吗?
A:这个问题很关键,别直接说“没问题”,越来越多公司开始注重员工的个性和创新力。
▷ HR温馨提示:
这时,可问问自己岗位的晋升空间,通过何种方式能晋升、新员工有什么培训项目等问题!
针对类
Q:一名数据分析师要具备哪些技能?
A:数据分析师需能准确分析、组织、收集或传播数据;掌握数据库设计,数据模型,数据挖掘等方面的技术知识以及分析大型数据集(SAS,Excel,SPSS等)的统计软件包知识。另外,根据工作和发展的方向不同,需掌握相应工具,这时应具体情况具体分析。
----------------
Q:分析项目的步骤包括哪些?
A:包括问题定义、数据挖掘、数据准备、模型化、数据认证、实施跟踪。
----------------
Q:数据挖掘和数据分析的区别?
A:数据分析是针对个别属性的实例分析,提供有关属性的各种信息,如值范围,离散值及其频率,空值的发生,数据类型,长度等。而数据挖掘则更侧重聚类分析,异常记录检测,依赖关系,序列发现,多个属性之间的关系控制等。
面试后
无论面试结果如何,一定要进行归纳总结。面试中被问到了不懂的问题,要及时解决,以防下次在同一个问题上再跌倒。
CDA除了涵盖各行大数据及数据分析从业者所需技能的热门培训课程外,就业学院还为培训顺利毕业的学员开通了就业直通车,服务包括系统的职业素质、1对1模拟面试等。
我们的就业服务
多年的就业指导积累和沉淀,CDA认为行业选择,技能提升、经验积累、职场价值观塑造等都比钱更关键。
CDA就业服务老师会根据就业班毕业学员自身的情况,针对其意向企业进行内推,并全程跟踪和辅导,提高他们就业的成功率。
另外,正确的事业观决定了一个人未来职场发展是否顺畅,所以CDA就业学院在全力培养学员专业技能实力外,就业服务时亦十分重视这点。
CDA不仅会指导学员不断完善简历,对于学员个人优势挖掘、心理建设、陪伴激励等方面亦兢兢业业,获得了喜人的战绩。
有图有真相
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20