京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:刘早起
来源:早起Python
如果你想用python进行数据分析,那么Jupyter notebook是你必须要熟练掌握的工具之一,而Notebook也有很多省时好用的小技巧,本文将分享我在使用Notebook时习惯使用的一些操作!
1.在Notebook中安装第三方库
有时我们在进行数据分析的过程中,或者是使用一些在线/远程Notebook,需要临时安装一个第三方库,如果从命令行(甚至没有命令行界面)安装后再重启notebook,那么所有进度都将丢失!
这时我们可以使用!pip install xxx 就可以直接在notebook将第三方库安装到本地,比如安装pyecharts
! pip install pyecharts
其实!就是在notebook中执行shell语句的符号,你也可以使用!来执行! ls等任意命令行代码。
2.在Notebook中使用markdown
以前经常有粉丝让我帮忙给他看代码,发来的.ipynb文件打开后,所有说明性的文字都用#来注释给出,读起来那是一个难受。
其实在Notebook中也可以使用markdown语句,写文字、打公式、贴图片都很轻松,就像上图一样只需要选中目标单元格,然后按下ESC,再按下M即可,也可以在菜单栏将当前单元格转为标签
3.快速计算运行时间
有时候我们需要计算一些函数或过程运行时间,以此来衡量代码的效率,在其他IDE可能需要写个函数或者使用第三方模块来完成,而在Notebook中,提供了便捷的魔法函数
这样我们只要敲几下键盘,就能快速得到代码块的运行时间
4.查看当前变量
当我们的代码越写越多,定义的变量越来越多,有时候就容易忘记曾经起过哪些名字,这时候回去翻代码是痛苦的,而在Notebook中,可以使用%who_ls查看当前定义了多少变量
当然也可以指定变量类型查看,比如查看有哪些变量是字符串
5.一次删除多行
有时候,当我们将别人的代码复制进Notebook后,常常会发生缩进错误
就像上图所示的一样,如果我们手动删除红框中的空白,那将会是很无聊的,需要按很多次退格键,这时我们可以按住option(Win下为Alt)键,此时光标会变成十字形,现在就可以选中目标区域一次性删除
6.直接获取文档
如果我们需要查看某些函数的用法,可能需要通过百度或者查找官方文档,额外打开很多页面来检索,其实在Notebook中可以使用Shift + Tab直接获取该方法的文档
就像上图一样,直接显示pd.merge的用法,一目了然,点开还能查看更详细的解释
7.加载外部文件
还是魔法命令,使用%load 可以直接加载外部文件,比如%load test.py就可以直接在notebook中打开对应文件,省去切换页面-复制粘贴的时间。
直接打开在线文档也是可以的,比如打开Matplotlib官方文档中的示例代码
%load http://matplotlib.org/mpl_examples/pylab_examples/contour_demo.py
8.直接运行Python脚本
上面是直接打开外部文件,那么能不能直接运行?答案是可以的,只要使用%run xxx.py即可在notebook中运行Python脚本并输出结果,以运行当前工作目录下的test.py为例
%run test.py
以上就是我在使用Jupyter Notebook时常用的8个命令,并且使用上述命令无需安装任何插件/外部模块,快去试试吧。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12