京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:刘早起
来源:早起Python
如果你想用python进行数据分析,那么Jupyter notebook是你必须要熟练掌握的工具之一,而Notebook也有很多省时好用的小技巧,本文将分享我在使用Notebook时习惯使用的一些操作!
1.在Notebook中安装第三方库
有时我们在进行数据分析的过程中,或者是使用一些在线/远程Notebook,需要临时安装一个第三方库,如果从命令行(甚至没有命令行界面)安装后再重启notebook,那么所有进度都将丢失!
这时我们可以使用!pip install xxx 就可以直接在notebook将第三方库安装到本地,比如安装pyecharts
! pip install pyecharts
其实!就是在notebook中执行shell语句的符号,你也可以使用!来执行! ls等任意命令行代码。
2.在Notebook中使用markdown
以前经常有粉丝让我帮忙给他看代码,发来的.ipynb文件打开后,所有说明性的文字都用#来注释给出,读起来那是一个难受。
其实在Notebook中也可以使用markdown语句,写文字、打公式、贴图片都很轻松,就像上图一样只需要选中目标单元格,然后按下ESC,再按下M即可,也可以在菜单栏将当前单元格转为标签
3.快速计算运行时间
有时候我们需要计算一些函数或过程运行时间,以此来衡量代码的效率,在其他IDE可能需要写个函数或者使用第三方模块来完成,而在Notebook中,提供了便捷的魔法函数
这样我们只要敲几下键盘,就能快速得到代码块的运行时间
4.查看当前变量
当我们的代码越写越多,定义的变量越来越多,有时候就容易忘记曾经起过哪些名字,这时候回去翻代码是痛苦的,而在Notebook中,可以使用%who_ls查看当前定义了多少变量
当然也可以指定变量类型查看,比如查看有哪些变量是字符串
5.一次删除多行
有时候,当我们将别人的代码复制进Notebook后,常常会发生缩进错误
就像上图所示的一样,如果我们手动删除红框中的空白,那将会是很无聊的,需要按很多次退格键,这时我们可以按住option(Win下为Alt)键,此时光标会变成十字形,现在就可以选中目标区域一次性删除
6.直接获取文档
如果我们需要查看某些函数的用法,可能需要通过百度或者查找官方文档,额外打开很多页面来检索,其实在Notebook中可以使用Shift + Tab直接获取该方法的文档
就像上图一样,直接显示pd.merge的用法,一目了然,点开还能查看更详细的解释
7.加载外部文件
还是魔法命令,使用%load 可以直接加载外部文件,比如%load test.py就可以直接在notebook中打开对应文件,省去切换页面-复制粘贴的时间。
直接打开在线文档也是可以的,比如打开Matplotlib官方文档中的示例代码
%load http://matplotlib.org/mpl_examples/pylab_examples/contour_demo.py
8.直接运行Python脚本
上面是直接打开外部文件,那么能不能直接运行?答案是可以的,只要使用%run xxx.py即可在notebook中运行Python脚本并输出结果,以运行当前工作目录下的test.py为例
%run test.py
以上就是我在使用Jupyter Notebook时常用的8个命令,并且使用上述命令无需安装任何插件/外部模块,快去试试吧。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27