
作者:星安果
来源:AirPython
1. 前言
在我们日常工作中,经常会使用 Word、Excel、PPT、PDF 等办公软件。但是,经常会遇到一些重复繁琐的事情,这时候手工操作显得效率极其低下;通过python 实现办公自动化变的很有必要。
接下来的 一系列 文章,我将带大家对 Python 办公自动化做一个全面的总结,绝对的干货!
2. 准备
使用 Python 操作 Excel 文件,常见的方式如下:
xlrd 和 xlwt 是操作 Excel 文件最多的两个依赖库。其中,xlrd 负责读取 Excel 文件,xlwt 可以写入数据到 Excel 文件,我们安装这两个依赖库。
# 安装依赖库 pip3 install xlrd pip3 install xlwt
3. xlrd 读取 Excel
使用 xlrd 中的 open_workbook(filepath) 打开本地一个 Excel 文件。
import xlrd # 打开文件,返回一个工作簿对象 wb = xlrd.open_workbook(file_path)
工作簿对象的 nsheets 属性获取 Sheet 数目,sheet_names() 方法返回所有 Sheet 名称的列表。
# 统计sheet数量 sheets_num, sheets_names = wb.nsheets, wb.sheet_names() print('sheet数量一共有:', sheets_num) print('sheet名称分别为:', sheets_names)
筛选出工作簿中的某一个 Sheet 有 2 种方式,分别是:
# 获取某一个sheet # 通过名称或者索引获取 sheet = wb.sheet_by_index(0) # sheet = wb.sheet_by_name('第一个Sheet') print(sheet)
每一个 sheet 对象都可以利用 name、nrows、ncols 获取 Sheet 名称、行数量、列数量。
另外,row_values(index)、col_values(index) 分别用于获取某一行或某一列的数据列表。
# 获取某一个sheet中,包含的行数量、列数量 sheet_name, sheet_row_count, sheet_column_count = sheet.name, sheet.nrows, sheet.ncols print('当前sheet名称为:', sheet_name, ",一共有:", sheet_row_count, "行;有:", sheet_column_count, "列") # 单独获取某一行数据,索引从0开始 # 比如:获取第2行数据 row_datas = sheet.row_values(1) print('第2行数据为:', row_datas) # 单独获取某一列数据,索引从0开始 # 比如:获取第二列数据 column_datas = sheet.col_values(1) print('第2列数据为:', column_datas)
单元格可以通过行索引、列索引,调用 cell(row_index,column_index) 函数获取。需要注意的是,行索引和列索引都是从 0 开始,即:0 代表第一行。在 xlrd 中,单元格的数据类型包含 6 种,用 ctype 属性对应关系如下:
# 获取某一个单元格的数据 # 比如:获取第2行第1列的单元格的数据 one_cell = sheet.cell(1, 0) # 单元格的值 cell_value = one_cell.value print("单元格的值为:", cell_value) # 单元格数据类型 cell_type = one_cell. print("单元格数据类型为:", cell_type)
最后,如果要获取当前 Sheet 所有单元格中的数据,可以通过遍历所有行、列来操作。
# 获取所有单元格的值 print('表格中所有数据如下:') for r in range(sheet.nrows): for i in range(sheet.ncols): print(sheet.cell(r, i).value)
4. xlwt 写入 Excel
如果想实现将数据写入到 Excel 中,xlwt 就很方便了。
首先,使用 xlwt 的 Workbook() 方法创建一个工作簿对象;
然后,使用工作簿对象的 add_sheet(sheetname) 方法新增 Sheet;
import xlwt sheetname = '第一个Sheet' # 创建一个工作簿对象 wb = xlwt.Workbook() # 添加Sheet,通过sheet名称 sheet = wb.add_sheet(sheetname)
接着,通过 sheet 对象的 write() 方法,按照行索引和列索引,将数据写入到对应单元格中去。
# 将数据写入到Sheet中 # 3个参数分别是:行索引(从0开始)、列索引(从0开始)、单元格的值 # 第一行第一列,写入一个数据 # 写入标题 for index, title in enumerate(self.titles): sheet.write(0, index, title) # 写入值 for index_row, row_values in enumerate(self.values): for index_column, column_value in enumerate(row_values): sheet.write(index_row + 1, index_column, column_value)
需要注意的是,最后必须调用工作簿的 save(filepath),才能在本地生成 Excel 文件。
# 保存文件 # 最后保存文件即可 wb.save(filepath)
5. 进阶用法
接下来,聊聊几个常用的进阶用法
1、获取所有可见的 Sheet
在读取 Sheet 数据时,经常需要过滤隐藏的 Sheet
当 sheet 对象的 visibility 属性值为 0 时,代表此 Sheet 在工作簿中是显示的;否则被隐藏了
def get_all_visiable_sheets(self, wb): """ 获取所有可见的sheet :param wb: :return: """ return list(filter(lambda item: item.visibility == 0, wb.sheets())) # 1、获取所有可看见的sheet sheet_visiable = self.get_all_visiable_sheets(wb) print('所有可见的sheet包含:', sheet_visiable)
2、获取 Sheet 可见行或列
某一个 Sheet 中,可能存在部分行、列被隐藏了。
def get_all_visiable_rows(self, sheet): """ 获取某一个sheet中,可见的行 :param sheet: :return: """ result = [index for index in range(sheet.nrows) if sheet.rowinfo_map[index].hidden == 0] return result def get_all_visiable_columns(self, sheet): """ 获取某一个sheet中,可见的列 :param sheet: :return: """ result = [index for index in range(sheet.ncols) if sheet.colinfo_map[index].hidden == 0] return result
3、获取单元格的样式
以获取单元格字体颜色和背景为例。
def get_cell_bg_color(self, wb, sheet, row_index, col_index): """ 获取某一个单元格的背景颜色 :param wb: :param sheet: :param row_index: :param col_index: :return: """ xfx = sheet.cell_xf_index(row_index, col_index) xf = wb.xf_list[xfx] # 字体颜色 font_color = wb.font_list[xf.font_index].colour_index # 背景颜色 bg_color = xf.background.pattern_colour_index return font_color, bg_color
需要注意的是,使用 xlrd 读取单元格的样式,打开工作簿的时候需要显式定义 formatting_info = True,否则会抛出异常。
# 注意:必须设置formatting_info=True,才能正常获取属性 wb = xlrd.open_workbook(file_path, formatting_info=True) sheet = wb.sheet_by_index(0
6. 最后
搭配使用 xlrd、xlwt,基本上能完成大部分的工作,对于一些复杂的功能,比如:复制、分割、筛选等功能,可以用上 xlutils 这个依赖库。需要指出的是,这个组合对 xlsx 的兼容性不太好;如果需要操作 xlsx 文件,需要先转为 xls,然后再进行。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16