
作者:丁点helper
来源: 丁点帮你
前面2篇R语言相关的文章以泰坦尼克号的数据为例,介绍了描述性统计中用到的计算操作,以及柱形图的绘制操作。今天我们继续聊聊如何在R中绘制直方图和散点图。
绘制直方图
仍使用titanic.csv这个数据。
# 导入数据 titanic <- read.csv("//Users//Desktop//titanic.csv",header = TRUE) names(titanic) # 查看titanic中的变量名 [1] "pclass" "survived" "sex" "age" "sibsp" "parch"
假设我们想对age这个变量绘制直方图,了解泰坦尼克号上乘客的年龄分布,可用hist()这个函数:
hist(titanic$age)
上图中直方图标题、颜色、坐标轴名称均可调整:
hist(titanic$age, col='orange', main='Passenger Age', lwd=2, xlab='Age (years)')
其中,col、main、xlab这三个命令在之前的文章中讲过;lwd为线条宽度命令,取值须为整数,默认值为1。
绘制散点图
接下来我们看看如何绘制散点图。还是老规矩,要用到的数据可通过以下方式下载:
文件名: wb.csv
链接: https://pan.baidu.com/s/1gOAuccW5i8cIW5HaPHnm8A
密码: nc5u
这是世界银行(word bank)对部分国家社会、经济、环境指标的统计数据。
# 导入数据 wb <- read.csv("//Users//Desktop//wb.csv",header = TRUE) names(wb) # 查看wb中的变量名 [1] "Country" "Code" "Population" "Rural" "GNI" "IncomeTop10" "Imports" [8] "Exports" "Military" "Cell" "Fertility66" "Fertility16" "Measles" "InfMort" [15] "LifeExp" "PM2.5" "Diesel" "CO2" "EnergyUse" "FossilPct" "Forest94" [22] "Forest14" "Deforestation" "GunTotal" "GunHomicide" "GunSuicide" "GunUnint" "GunUndet" [29] "GunsPer100"
这里我们先关注第五个变量『GNI』,其意义是人均国民收入。GNI是Gross National Income的缩写;再关注第18个变量『CO2』,其意义是人均二氧化碳排放量。
一项研究想观察人均国民收入和人均二氧化碳排放量之间存在何种关系,由于二者均为数值型变量,我们可以用散点图的方式直观感受一下:
plot(wb$GNI,wb$CO2, main="CO2 vs. GNI (both per capita)", xlab="Gni per capita", ylab="CO2 per capita", col="red", pch=19) # col命令的取值还可以是数字,本例中red对应的数字是2 plot(wb$GNI,wb$CO2, main="CO2 vs. GNI (both per capita)", xlab="Gni per capita", ylab="CO2 per capita", col=2, pch=19)
上面两条代码的运行结果是一样的。wb$GNI 和 wb$CO2 分别为散点图的横轴和纵轴;pch表示点的形状,取值为整数,本例中用到的19表示圆点。
下面用一个图片来给大家介绍1-20的数字分别代表什么颜色、什么形状:
plot(c(1:20),rep(1,20),col=c(1:20),pch=c(1:20),cex=2)
cex表示对图中的文本或符号放大多少倍,大家可自行在R中操作,感受cex=1时图像的变化。
举个例子,col=15:黄色;pch=15:方块。在R中,可选的颜色还有很多,大家可以查看下图中的颜色名称,绘图时在col命令中输入即可。
手机用户可横屏查看效果更佳,告别大红大蓝秋裤色就靠它了~
今天就学到这里啦,之后还有更多R绘图课程来和大家见面!
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18