京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多人到中年才发现,自己的职业生涯越来越局限,对于为什么会成这样,却理不出头绪来。
其实,这里可套用一个适用于多领域的原则,即:正确的努力会让路越走越宽,而一旦方向错误,往往会让自己陷入死胡同。
今天,我们就来探讨下,哪些思维方式容易让你未来的职场之路“无路可走”。
处处给自己设限
这种思维不易察觉,谁不想在事业上一展抱负,怎么可能给自己设限?所以,要先学会正确的自我省察。
▷ 你是否已经习惯了安逸?
▷ 对改变是否非常排斥?
▷ 是不是无法静下心来学习新知识和新技能?
▷ 面对挑战,总觉得自己不行?
在职场上,一定要多向上看、向外看,多接触新东西,多学习新技能,多和人打交道……
舒适区滞留太久会让人产生错误的自我认知,建议职场人可根据专业背景,去匹配其他岗位、公司,甚至行业,实现横向扩展。
比如:你是“码农”,但表达和讲解力较强,就别局限在程序员上,完全可向该技术领域的培训专家或咨询顾问发展,甚至以技术入股跻身技术合伙人行列。
人无远虑必有近忧
人往往会随大流,盲目跟风,随意选择。有个经典面试问题:为什么会选择我们公司?
有说朋友推荐、有说看到招聘就来了、有说薪资高、有说环境或福利好等,看到的往往是短期利益,如此易遭遇“人无远虑必有近忧”的困境。
俗话说,机会总是留给有准备的人,给自己制定长期职业规划,一步一个脚印,从而避开中年职业危机。
无法持之以恒
现今社会流行“快文化”,让我们变得浮躁,无论从事什么都比较缺乏耐心,无法持之以恒。
所以出现了频繁跳槽,却越跳越糟,让很多职场人错失了学习知识、掌握技能的最佳时机,以致人到中年却一事无成。
无论哪个行业,唯有持之以恒,在原有优势基础上进行转型和提升,成为自己所在领域的专家,才能将职业路线不断拓宽。
当然,除了警惕让你越走越窄的思维外,还要选择好前景行业,让自己能搭乘上数字化时代的“和谐号”,成“越老越值钱”的人。
世界经济论坛发布的《2018就业前景报告》指出,2020年全球将有7500万工作岗位被人工智能替代。同时,亦会衍生出1.33亿个新的就业岗位。
调查显示,人工智能将迅速取代会计、客户管理、初级技术工人、邮政快递、秘书、司机等行业的劳动者,使大量具有可编码、可重复性的职业快速贬值。
不过,内外科医生、数据分析师、制造业一线主管、律师、软件应用开发工程师等职业,却有越来越广阔的职业发展空间。
拿极受追捧的数据分析师来说,2020年中国大数据行业人才需求规模预计将达210万,未来5年仍将保持30%-40%的增速,需求总量在2000万人左右。
近几年高校纷纷新增大数据相关专业,但输出量远远无法填补目前市场的巨大缺口,导致数据分析岗位高薪却供不应求。
资料来源 / ITPUB博客
迫切的市场需求让数据分析岗呈现多元化面貌,主体可划分为纯数据岗和数据赋能岗。从下图中,可以看出数据分析岗的分工细、路子广,选择多……
只要你持之以恒成为其中某一技术线的专家,就能实现“越来越值钱”的职业目标。接下来,再给大家具体推荐些数据分析行业越老越值钱的工作。
数据分析岗中越老越值钱的岗位
Python数据分析师
企业想在竞争激烈的市场中胜出,决策速度和反馈效率尤为重要。什么样的数据、要透过什么样的方法,才能快速且实时的转变成决策时有用的信息,这是现代企业最迫切且不可避免的问题。Python数据分析在企业决策中散发出了极大的魅力,受到从业者的追捧。
业务数据分析师
理性数据分析辅助实战经验,成为主流决策方式,企业急需业务数据分析过硬的人才。
人工智能工程师
当下,人工智能不断渗透各行各业,众多岗位已经被其取代。与其等待着被失业,不如主动出击,成为AI领域的一员,做人工智能的“爸爸”。
不过,由于人工智能的概念宽泛,涉及到算法、识别、语言处理等技术,所以被社会大众一致公认为高不可攀的高科技,导致很多人不敢轻易涉足。
如果你也是这样想,就太可惜了,因为你可能会由于一些认知上的偏见,错过了这个未来最具发展潜力的行业,它其实并没有我们想象中的那么遥不可及,而且也是越老越值钱的岗位之一。
结束语:“越老越值钱”的职业不但有,且会越来越多,就看你能否把握住这些绝佳机会。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29