京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:伍正祥
来源:AI入门学习
一、图形概述
平行坐标是一种通常的可视化方法, 用于对 高维几何多元数据的可视化。为了表示在高维空间的一个点集, 在N条平行的线的背景下,一个在高维空间的点被表示为一条拐点在N条平行坐标轴的折线,在第K个坐标轴上的位置就表示这个点在第K个维的值。
平行坐标是信息可视化的一种重要技术。 为了克服传统的笛卡尔直角坐标系容易耗尽空间、 难以表达三维以上数据的问题, 平行坐标将高维数据的各个变量用一系列相互平行的坐标轴表示, 变量值对应轴上位置。 为了反映变化趋势和各个变量间相互关系,往往将描述不同变量的各点连接成折线。所以平行坐标图的实质是将 维欧式空间的一个点Xi(xi1,xi2,...,xim) 映射到 维平面上的一条曲线。
平行坐标图可以表示超高维数据。 平行坐标的一个显著优点是其具有良好的数学基础, 其射影几何解释和对偶特性使它很适合用于可视化数据分析。下面我们看看具体的应用案例。
二、案例学习
Millward Brown每年都会总结全球范围内最具价值的品牌,Valerio Pellegrini根据2010至2015年的前100位品牌的排名变化,下图是利用平行坐标图进行可视化的结果,从图中可以看出来,谷歌、IBM、苹果、微软的排名都比较稳定,变动不大,而处于中下的公司,每年的排名波动则比较大,并且每年都有新进品牌。非常清晰的实现了多样本、多维度的对比分析。
100 MOST VALUABLE BRANDS 2010-15
下面的平行坐标图也是对1990至2013年,全球移民目的地和来源地的排名进行了可视化。
《全球移民路线图:美国为移民首选目的地》网易数读
下面的图,表达了1978年—2017年,大陆各省人均GDP的名次变化,图中包含的信息量非常大。
1)40年来,北京、上海、天津一直占据top 3,只不过换了个位置
2)天津一度占据榜首
3)黑龙江和甘肃高开低走,就像瀑布一样一泻千里
4)福建低开高走,上升迅猛,都说福建人会做生意,此数据显示,不假
5)贵州打开跌停板,近几年摆脱垫底,估计是贵阳发展大数据的原因
6)海南冲高回落,几乎又回到了原点
还包含了更多的信息,比如每个大BOSS任期内,是否存在重大扶持的省份等……
下图是1978年—2017年,大陆各省总体GDP的名次变化,同样包含特别多的信息,大家可以分析下。
(1978-2017年全国各省区GDP排名,不含香港、澳门、台湾,数据来源国家统计局及各省统计年鉴,制图@张靖/星球研究所)
在平行坐标图中,每个变量都有自己的轴线,所有轴线彼此平行放置,各自可有不同的刻度和测量单位,一系列的直线穿越所有轴线来表示不同数值。
另外,虽然轴线排列没有固定的顺序,但是因为相邻变量会比非相邻的变量更容易进行比较,所以轴线排列的顺序可能会影响读者理解数据。
在平行坐标图里,各轴的单位一般是不相同的,所以不能进行跨轴的数据比较。但是在上文提到的关于不同年份的排名时,由于是对相同变量的可视化,所以可以进行跨轴比较。因而,在读图时,我们要注意各轴的测量单位。
三、绘图指南
1、R语言绘图
说实话,R语言的这个包绘图比较丑,大家有没有更好的包推荐,上面的案例,基本上都有组合P图的痕迹,直接画的软件还没发现比较好的。
#安装与加载包
#install.packages('lattice')
library(lattice)
data(iris)
parallelplot(
~ iris[1:4],
data = iris,
groups = Species,
horizontal.axis = FALSE,#是否要垂直展示
scales = list(x = list(rot = 90))
)
2、线上Echarts绘图
网址链接:http://echarts.baidu.com/examples/
改变图中的代码,即可完成想要的图
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20