
作者:刘早起
来源:早起Python
大家好,这个国庆,你出去旅游了吗?每次假期后网友总爱去微博、知乎吐槽国庆旅游的坑爹景点,相关话题也频上热榜,在国庆期间也有相关文章[1]通过整理对应话题统计出最坑爹城市前五名分别为杭州、西安、厦门、北京、南京,而最坑爹景点则有西湖、兵马俑、鼓浪屿、故宫、夫子庙、黄鹤楼等[2]。
本文通过Python爬取旅游网站评论数据,分析这些城市和景点在国庆期间到底表现如何,是否真的像网友吐槽的那样坑爹。
01、数据来源与说明
本文使用的数据均来源于携程旅行官网对应景点评论,采集时间段为2020-09-30至2020-10-08。因其所有数据均来自于具体订单完成后评价,使用该的数据相比社交平台讨论数据而言将更加真实。下面将以故宫为例简单说明如何使用Python爬取数据,首先打开对应页面
https://you.ctrip.com/sight/beijing1/229.html
如上图所示,按下F12之后在评论区域点击最新即可找到存储打分、评价等数据的包,之后只需查看headers等相关信息,使用Requests构造请求即可取下数据,要注意的是该请求为post形式,所以需要传入对应参数才可以,此处不做过多讲解。
但由于我们只需要国庆期间的数据,最多的景点也不过100多页评论,所以另外一种方法是使用Selenium模拟浏览器操作也可以轻松成功拿下数据,之后使用pandas清洗即可。
最终本文选取的字段为:
02、不同城市旅游热度分析
本节我们将国庆期间各省份排名前三的景点评论数量进行汇总,整理后数据的视为该省份的旅游热度,计算得到不同省份旅游热度,最热门的城市为北京,其次是江浙沪以及湖北、四川、广东、福建等省份。而这个热度排名也基本与前文提到的社交平台吐槽排名符合。
现在我们对网友评出最坑爹城市前五名的杭州、西安、厦门、北京、南京的旅游景点热度单独分析。
从评论数量来看,热度排行前列的景点基本在北京和西安,最受欢迎的景点为西安的兵马俑,而备受吐槽的西湖、鼓浪屿、夫子庙等地在网站并没有太多的评论,可能与这些景点无需门票而无法产生订单有关。
03、“坑爹”景点分析
——好评度分析
本节我们进一步对上述五个城市的景点进一步分析其坑爹程度,我们对不同景点的网友好评度进行分析。
根据该网站数据,兵马俑和故宫分别斩获近9成网友的好评,而西湖和鼓浪屿的好评度仅在80%左右,黄鹤楼也有近85%的网友给出好评,当然这里的好评仅为网友给出的总分,可以视为整体评价,接下来将对具体的评论内容进行分析。
——评论情感分析
现在我们将每一个评论的具体内容进行情感分析。
可以看到,虽然上一节的好评度分析中,每个景点都有超过8成的网友给出好评,但是从评价内容来看,给出正向的评价网友除了故宫之外,均不足8成,而整体评价较好的兵马俑,却有24.79%的网友给出负向评价。
——其他指标分析
在我们采集到的数据字段中除了总得分(好评)之外,还有景色、趣味、性价比三个指标,现在看一下不同总分的各项指标得分对比
不难看出在高分评价中,性价比指标的得分高于趣味性,而低分评价中则恰好相反,说明性价比不足更容易更容易让网友反感。研究该部分评论发现大多是在吐槽景区的(额外)消费高。
04、“坑爹”景点说什么
最后让我们来看看上述五个景点的词云分析,看看网友到底在吐槽什么。
北京—故宫
今天恰逢紫禁城600周年,故宫也有很多的特别展出,大多数网友都在赞叹故宫的宏伟磅礴,而由于疫情原因,故宫限流,也有小部分人在吐槽门票难抢。
厦门—鼓浪屿
下面是鼓浪屿的评论词云,除了景色不错之外,体验一般也很突出,其次就是上面说过的性价比不足,景点消费贵。
杭州—西湖
西湖词云同样是景色不错,但是不够好玩,性价比不足,其次就是排队时间太久
其实西湖景区并不大,国庆期间难免会人人人人人
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02