京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
作者:真达、Mika
数据:真达
【导读】
今天教大家用python分析《世界幸福指数报告》。《世界幸福指数报告》是对全球幸福状况的一次具有里程碑意义的调查。
民意测验机构盖洛普从2012年起,每年都会在联合国计划下发布《世界幸福指数报告》,报告会综合两年内150多个国家的国民对其所处社会、城市和自然环境等因素进行评价后,再根据他们所感知的幸福程度对国家进行排名。
《世界幸福指数报告》的编撰主要依赖于对150多个国家的1000多人提出一个简单的主观性问题:“如果有一个从0分到10分的阶梯,顶层的10分代表你可能得到的最佳生活,底层的0分代表你可能得到的最差生活。你觉得你现在在哪一层?”
那么哪个国家在总体幸福指数上排名最高?哪些因素对幸福指数的影响最大?今天我们就带你用Python来聊一聊。
01、数据理解
关键字段含义解释:
1. rank:幸福指数排名
2. region:国家
3. happiness:幸福指数得分
4. gdp_per_capita:GDP(人均国内生产总值)
5. healthy_life_expectancy:健康预期寿命
6. freedom_to_life_choise:自由权
7. generosity:慷慨程度
8. year:年份
9. corruption_perceptions:清廉指数
10. social_support:社会支持(客观上物质上的援助和直接服务;主观上指个体感到在社会中被尊重、被支持和被理解的情绪体验和满意程度。)
02、数据导入和数据整理
首先导入所需包。
# 数据整理 import numpy as np import pandas as pd # 可视化 import matplotlib.pyplot as plt import seaborn as sns import plotly as py import plotly.graph_objs as go import plotly.express as px from plotly.offline import init_notebook_mode, iplot, plot init_notebook_mode(connected=True) plt.style.use('seaborn')
# 读入数据
df_2015 = pd.read_csv('./deal_data/2015.csv')
df_2016 = pd.read_csv('./deal_data/2016.csv')
df_2017 = pd.read_csv('./deal_data/2017.csv')
df_2018 = pd.read_csv('./deal_data/2018.csv')
df_2019 = pd.read_csv('./deal_data/2019.csv')
# 新增列-年份
df_2015["year"] = str(2015)
df_2016["year"] = str(2016)
df_2017["year"] = str(2017)
df_2018["year"] = str(2018)
df_2019["year"] = str(2019)
# 合并数据
df_all = df_2015.append([df_2016, df_2017, df_2018, df_2019], sort=False)
df_all.drop('Unnamed: 0', axis=1, inplace=True)
df_all.head()
print(df_2015.shape, df_2016.shape, df_2017.shape, df_2018.shape, df_2019.shape) (158, 10) (157, 10) (155, 10) (156, 11) (156, 11)
df_all.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 782 entries, 0 to 155 Data columns (total 10 columns): region 782 non-null object rank 782 non-null int64 happiness 782 non-null float64 gdp_per_capita 782 non-null float64 healthy_life_expectancy 782 non-null float64 freedom_to_life_choise 782 non-null float64 corruption_perceptions 781 non-null float64 generosity 782 non-null float64 year 782 non-null object social_support 312 non-null float64 dtypes: float64(7), int64(1), object(2) memory usage: 67.2+ KB
03、数据可视化
2019世界幸福地图
整体来看,北欧的国家幸福指数较高,如冰岛、丹麦、挪威、芬兰;东非和西非的国家幸福指数较低,如多哥、布隆迪、卢旺达和坦桑尼亚。
代码展示:
data = dict(type = 'choropleth',
locations = df_2019['region'],
locationmode = 'country names',
colorscale = 'RdYlGn',
z = df_2019['happiness'],
text = df_2019['region'],
colorbar = {'title':'Happiness'})
layout = dict(title = 'Geographical Visualization of Happiness Score in 2019',
geo = dict(showframe = True, projection = {'type': 'azimuthal equal area'}))
choromap3 = go.Figure(data = [data], layout=layout)
plot(choromap3, filename='./html/世界幸福地图.html')
2019世界幸福国家排行Top10
2019年报告,芬兰连续两年被评为“全球最幸福国家”。丹麦、挪威、冰岛、荷兰进入前五名,对比2018年报告,中国从86名下降到93名。
代码展示:
# 合并数据 rank_top10 = df_2019.head(10)[['rank', 'region', 'happiness']] last_top10 = df_2019.tail(10)[['rank', 'region', 'happiness']] rank_concat = pd.concat([rank_top10, last_top10]) # 条形图 fig = px.bar(rank_concat, x="region", y="happiness", color="region", title="World's happiest and least happy countries in 2019") plot(fig, filename='./html/2019世界幸福国家排行Top10和Last10.html')
幸福指数相关性
我们可以得出以下结论:
以下分别观察各个因素的影响程度。
GDP和幸福得分
人均GDP与幸福得分呈高度线性正相关关系,GDP越高的国家,幸福水平相对越高。
代码展示:
# 散点图 fig = px.scatter(df_all, x='gdp_per_capita', y='happiness', facet_row='year', color='year', trendline='ols' ) fig.update_layout(height=800, title_text='GDP per capita and Happiness Score') plot(fig, filename='./html/GDP和幸福得分.html')
健康预期寿命和幸福得分
健康预期寿命与幸福得分呈高度线性正相关关系,健康预期寿命越高的国家,幸福水平相对越高。
代码展示:
散点图 fig = px.scatter(df_all, x='healthy_life_expectancy', y='happiness', facet_row='year', color='year', trendline='ols' ) fig.update_layout(height=800, title_text='Healthy Life Expecancy and Happiness Score') plot(fig, filename='./html/健康预期寿命和幸福得分.html')
GDP和幸福水平动态图
代码展示:
fig = px.scatter(df_all, x='gdp_per_capita', y='happiness', animation_frame='year', animation_group='region', size='rank', color='region', hover_name='region', trendline='ols' ) fig.update_layout(title_text='Happiness Rank vs GDP per Capita') plot(fig, filename='./html/GDP和幸福水平动态图展示.html')
健康预期寿命和幸福水平动态图
代码展示:
fig = px.scatter(df_all, x='healthy_life_expectancy', y='happiness', animation_frame='year', animation_group='region', size='rank', color='region', hover_name='region', trendline='ols' ) fig.update_layout(title_text='Happiness Rank vs healthy_life_expectancy') plot(fig, filename='./html/健康预期寿命和幸福水平动态图展示.html')
04、数据建模
我们使用线性回归进行建立一个基准模型,首先筛选一下建模变量,并删除空值记录。
sel_cols = ['happiness', 'gdp_per_capita', 'healthy_life_expectancy', 'freedom_to_life_choise', 'corruption_perceptions', 'generosity'] # 重置索引 df_model.index = range(df_model.shape[0]) df_model = df_all[sel_cols] # 删除空值 df_model = df_model.dropna() df_model.head()
from statsmodels.formula.api import ols # 建立多元线性回归模型 lm_m = ols(formula='happiness ~ gdp_per_capita + healthy_life_expectancy + freedom_to_life_choise + corruption_perceptions + generosity', data=df_model).fit() lm_m.summary()
模型的R-squared=0.744,拟合效果尚可,根据模型的参数可知:
比较预测值和真实值的分布:
df_pred = pd.concat([df_model['happiness'], y_pred], axis=1) df_pred.columns = ['y_true', 'y_pred'] # 散点图 fig = px.scatter(df_pred, x='y_true', y='y_pred', trendline='ols') fig.update_layout(title='Resid of OLS Regression') plot(fig, filename='./html/预测值和真实值分布图.html')
以下为模型残差分布图。
fig = px.histogram(x=lm_m.resid) fig.update_layout(title='Resid of OLS Regression') plot(fig, filename='./html/多元线性回归残差分布图.html')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12