
CDA数据分析师 出品
作者:真达、Mika
数据:真达
【导读】
今天教大家用python分析《世界幸福指数报告》。《世界幸福指数报告》是对全球幸福状况的一次具有里程碑意义的调查。
民意测验机构盖洛普从2012年起,每年都会在联合国计划下发布《世界幸福指数报告》,报告会综合两年内150多个国家的国民对其所处社会、城市和自然环境等因素进行评价后,再根据他们所感知的幸福程度对国家进行排名。
《世界幸福指数报告》的编撰主要依赖于对150多个国家的1000多人提出一个简单的主观性问题:“如果有一个从0分到10分的阶梯,顶层的10分代表你可能得到的最佳生活,底层的0分代表你可能得到的最差生活。你觉得你现在在哪一层?”
那么哪个国家在总体幸福指数上排名最高?哪些因素对幸福指数的影响最大?今天我们就带你用Python来聊一聊。
01、数据理解
关键字段含义解释:
1. rank:幸福指数排名
2. region:国家
3. happiness:幸福指数得分
4. gdp_per_capita:GDP(人均国内生产总值)
5. healthy_life_expectancy:健康预期寿命
6. freedom_to_life_choise:自由权
7. generosity:慷慨程度
8. year:年份
9. corruption_perceptions:清廉指数
10. social_support:社会支持(客观上物质上的援助和直接服务;主观上指个体感到在社会中被尊重、被支持和被理解的情绪体验和满意程度。)
02、数据导入和数据整理
首先导入所需包。
# 数据整理 import numpy as np import pandas as pd # 可视化 import matplotlib.pyplot as plt import seaborn as sns import plotly as py import plotly.graph_objs as go import plotly.express as px from plotly.offline import init_notebook_mode, iplot, plot init_notebook_mode(connected=True) plt.style.use('seaborn')
# 读入数据 df_2015 = pd.read_csv('./deal_data/2015.csv') df_2016 = pd.read_csv('./deal_data/2016.csv') df_2017 = pd.read_csv('./deal_data/2017.csv') df_2018 = pd.read_csv('./deal_data/2018.csv') df_2019 = pd.read_csv('./deal_data/2019.csv') # 新增列-年份 df_2015["year"] = str(2015) df_2016["year"] = str(2016) df_2017["year"] = str(2017) df_2018["year"] = str(2018) df_2019["year"] = str(2019) # 合并数据 df_all = df_2015.append([df_2016, df_2017, df_2018, df_2019], sort=False) df_all.drop('Unnamed: 0', axis=1, inplace=True) df_all.head()
print(df_2015.shape, df_2016.shape, df_2017.shape, df_2018.shape, df_2019.shape) (158, 10) (157, 10) (155, 10) (156, 11) (156, 11)
df_all.info()
<class 'pandas.core.frame.DataFrame'> Int64Index: 782 entries, 0 to 155 Data columns (total 10 columns): region 782 non-null object rank 782 non-null int64 happiness 782 non-null float64 gdp_per_capita 782 non-null float64 healthy_life_expectancy 782 non-null float64 freedom_to_life_choise 782 non-null float64 corruption_perceptions 781 non-null float64 generosity 782 non-null float64 year 782 non-null object social_support 312 non-null float64 dtypes: float64(7), int64(1), object(2) memory usage: 67.2+ KB
03、数据可视化
2019世界幸福地图
整体来看,北欧的国家幸福指数较高,如冰岛、丹麦、挪威、芬兰;东非和西非的国家幸福指数较低,如多哥、布隆迪、卢旺达和坦桑尼亚。
代码展示:
data = dict(type = 'choropleth', locations = df_2019['region'], locationmode = 'country names', colorscale = 'RdYlGn', z = df_2019['happiness'], text = df_2019['region'], colorbar = {'title':'Happiness'}) layout = dict(title = 'Geographical Visualization of Happiness Score in 2019', geo = dict(showframe = True, projection = {'type': 'azimuthal equal area'})) choromap3 = go.Figure(data = [data], layout=layout) plot(choromap3, filename='./html/世界幸福地图.html')
2019世界幸福国家排行Top10
2019年报告,芬兰连续两年被评为“全球最幸福国家”。丹麦、挪威、冰岛、荷兰进入前五名,对比2018年报告,中国从86名下降到93名。
代码展示:
# 合并数据 rank_top10 = df_2019.head(10)[['rank', 'region', 'happiness']] last_top10 = df_2019.tail(10)[['rank', 'region', 'happiness']] rank_concat = pd.concat([rank_top10, last_top10]) # 条形图 fig = px.bar(rank_concat, x="region", y="happiness", color="region", title="World's happiest and least happy countries in 2019") plot(fig, filename='./html/2019世界幸福国家排行Top10和Last10.html')
幸福指数相关性
我们可以得出以下结论:
以下分别观察各个因素的影响程度。
GDP和幸福得分
人均GDP与幸福得分呈高度线性正相关关系,GDP越高的国家,幸福水平相对越高。
代码展示:
# 散点图 fig = px.scatter(df_all, x='gdp_per_capita', y='happiness', facet_row='year', color='year', trendline='ols' ) fig.update_layout(height=800, title_text='GDP per capita and Happiness Score') plot(fig, filename='./html/GDP和幸福得分.html')
健康预期寿命和幸福得分
健康预期寿命与幸福得分呈高度线性正相关关系,健康预期寿命越高的国家,幸福水平相对越高。
代码展示:
散点图 fig = px.scatter(df_all, x='healthy_life_expectancy', y='happiness', facet_row='year', color='year', trendline='ols' ) fig.update_layout(height=800, title_text='Healthy Life Expecancy and Happiness Score') plot(fig, filename='./html/健康预期寿命和幸福得分.html')
GDP和幸福水平动态图
代码展示:
fig = px.scatter(df_all, x='gdp_per_capita', y='happiness', animation_frame='year', animation_group='region', size='rank', color='region', hover_name='region', trendline='ols' ) fig.update_layout(title_text='Happiness Rank vs GDP per Capita') plot(fig, filename='./html/GDP和幸福水平动态图展示.html')
健康预期寿命和幸福水平动态图
代码展示:
fig = px.scatter(df_all, x='healthy_life_expectancy', y='happiness', animation_frame='year', animation_group='region', size='rank', color='region', hover_name='region', trendline='ols' ) fig.update_layout(title_text='Happiness Rank vs healthy_life_expectancy') plot(fig, filename='./html/健康预期寿命和幸福水平动态图展示.html')
04、数据建模
我们使用线性回归进行建立一个基准模型,首先筛选一下建模变量,并删除空值记录。
sel_cols = ['happiness', 'gdp_per_capita', 'healthy_life_expectancy', 'freedom_to_life_choise', 'corruption_perceptions', 'generosity'] # 重置索引 df_model.index = range(df_model.shape[0]) df_model = df_all[sel_cols] # 删除空值 df_model = df_model.dropna() df_model.head()
from statsmodels.formula.api import ols # 建立多元线性回归模型 lm_m = ols(formula='happiness ~ gdp_per_capita + healthy_life_expectancy + freedom_to_life_choise + corruption_perceptions + generosity', data=df_model).fit() lm_m.summary()
模型的R-squared=0.744,拟合效果尚可,根据模型的参数可知:
比较预测值和真实值的分布:
df_pred = pd.concat([df_model['happiness'], y_pred], axis=1) df_pred.columns = ['y_true', 'y_pred'] # 散点图 fig = px.scatter(df_pred, x='y_true', y='y_pred', trendline='ols') fig.update_layout(title='Resid of OLS Regression') plot(fig, filename='./html/预测值和真实值分布图.html')
以下为模型残差分布图。
fig = px.histogram(x=lm_m.resid) fig.update_layout(title='Resid of OLS Regression') plot(fig, filename='./html/多元线性回归残差分布图.html')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25