
作者:丁点helper
来源:丁点帮你
前面的文章提到,R语言是一门针对『对象』的语言,这里说的对象,最主要的就是数据。R可以创建、读取、处理多种类型的数据。今天先讲一些基本概念。
稍微接触过统计的同学应该很熟悉下图所示的变量类型,R中的多种数据类型可以满足各类变量的表达,我们逐一讲解:
1. 数值型(numeric):数据的内容为数字。上图中,定量变量和定性变量都可以用数值表示。下面的例子中,x, y, z, w 均为数值型数据。
x <- 175.3 #设 x为身高,x为定量变量(连续型) y <- 5 #设 y为家庭人口数,y为定量变量(离散型) z <- 6 #设 z为教育程度,6表示本科及以上,z为定性变量(有序) w <- 1 #设 w为性别,1表示女性,w为定性变量(无序)
2. 字符型(character):数据的内容为字符。字符型数据可用来表示定性变量,但不能表示定量变量。只要将内容放入英文双引号 "" 中,该数据即会被R识别为字符型。下面例子中的z, w 均为字符型数据。
z <- "本科及以上" #设 z为教育程度,z为定性变量(有序) w <- "女" #设 w为性别,w为定性变量(无序)
3. 逻辑型(logical):仅有两个取值,TRUE和FALSE,注意必须是大写。
4. 因子型(factor):因子是针对定性变量而言的,刚刚讲到定性变量既可以用数值、也可以用字符表示,在此基础上做一个简单的处理就会成为因子型数据。这个处理不会对数据的内容造成任何改变,但会有助于后续的统计分析工作,之后会详细讲。
科学研究中,x, y, z, w 这几个变量一般不可能都只有一个数据,而且不同变量之间还需要互相组合来完成统计分析。接下来我们就来看看多个数据、多个变量是怎么组合的。
R语言中的数据结构
在刚开始接触统计的时候,我们会经常强调一对概念——总体和样本。但是,这个问题在做回归时可能会被忽略。
初学者们通常会被向量、数组之类的名词搞得一头雾水,其实这些都是表达数据结构的名词,本质就是数据的组合形式。下图展示了R中5种数据结构。
将每一个小的正方体看做一个数据,那么:
(a) 向量(vector)就是一连串数据的组合,可以看做是一行或一列数据,其中的数据类型可以是数值型、字符型、逻辑型或因子型。注意,单个向量中的数据必须拥有相同的类型。
比如上图(a)中的三个小方块可以是1, 20, 100这三个数字,也可以是"小学", "初中", "大学"这三个字符,或是TRUE, FALSE, FALSE这样的逻辑型数据。
(b) 矩阵(matrix)是具有一定行数和列数的数据集合。其数据类型可以是数值型、字符型、逻辑型或因子型。矩阵中所有数据的类型必须相同。
(c) 数组(array)是矩阵的推广,即在矩阵拥有的两个维度(行、列)的基础上增加了第三个维度。其中的数据也只能拥有一种类型。该类数据结构在一般的统计分析中不常用。
(d) 数据框(data frame)的结构类似于矩阵,但它可包含多种数据类型(数值型、字符型、逻辑型或因子型),是最常用的数据结构。通常,数据框中的行表示观察对象(也叫观测/observation),列表示变量(variable)。
(e) 列表(list)像一个大抽屉,可以将若干(可能无关的)数据信息整合到单个数据结构中。这里的数据信息可以是包括列表在内的五种数据结构中的任意一种或几种。在R中,由于许多函数的运行结果都是以列表的形式返回的,因此该类数据结构也是学习的重点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10