京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
前面的文章提到,R语言是一门针对『对象』的语言,这里说的对象,最主要的就是数据。R可以创建、读取、处理多种类型的数据。今天先讲一些基本概念。
稍微接触过统计的同学应该很熟悉下图所示的变量类型,R中的多种数据类型可以满足各类变量的表达,我们逐一讲解:
1. 数值型(numeric):数据的内容为数字。上图中,定量变量和定性变量都可以用数值表示。下面的例子中,x, y, z, w 均为数值型数据。
x <- 175.3 #设 x为身高,x为定量变量(连续型) y <- 5 #设 y为家庭人口数,y为定量变量(离散型) z <- 6 #设 z为教育程度,6表示本科及以上,z为定性变量(有序) w <- 1 #设 w为性别,1表示女性,w为定性变量(无序)
2. 字符型(character):数据的内容为字符。字符型数据可用来表示定性变量,但不能表示定量变量。只要将内容放入英文双引号 "" 中,该数据即会被R识别为字符型。下面例子中的z, w 均为字符型数据。
z <- "本科及以上" #设 z为教育程度,z为定性变量(有序) w <- "女" #设 w为性别,w为定性变量(无序)
3. 逻辑型(logical):仅有两个取值,TRUE和FALSE,注意必须是大写。
4. 因子型(factor):因子是针对定性变量而言的,刚刚讲到定性变量既可以用数值、也可以用字符表示,在此基础上做一个简单的处理就会成为因子型数据。这个处理不会对数据的内容造成任何改变,但会有助于后续的统计分析工作,之后会详细讲。
科学研究中,x, y, z, w 这几个变量一般不可能都只有一个数据,而且不同变量之间还需要互相组合来完成统计分析。接下来我们就来看看多个数据、多个变量是怎么组合的。
R语言中的数据结构
在刚开始接触统计的时候,我们会经常强调一对概念——总体和样本。但是,这个问题在做回归时可能会被忽略。
初学者们通常会被向量、数组之类的名词搞得一头雾水,其实这些都是表达数据结构的名词,本质就是数据的组合形式。下图展示了R中5种数据结构。
将每一个小的正方体看做一个数据,那么:
(a) 向量(vector)就是一连串数据的组合,可以看做是一行或一列数据,其中的数据类型可以是数值型、字符型、逻辑型或因子型。注意,单个向量中的数据必须拥有相同的类型。
比如上图(a)中的三个小方块可以是1, 20, 100这三个数字,也可以是"小学", "初中", "大学"这三个字符,或是TRUE, FALSE, FALSE这样的逻辑型数据。
(b) 矩阵(matrix)是具有一定行数和列数的数据集合。其数据类型可以是数值型、字符型、逻辑型或因子型。矩阵中所有数据的类型必须相同。
(c) 数组(array)是矩阵的推广,即在矩阵拥有的两个维度(行、列)的基础上增加了第三个维度。其中的数据也只能拥有一种类型。该类数据结构在一般的统计分析中不常用。
(d) 数据框(data frame)的结构类似于矩阵,但它可包含多种数据类型(数值型、字符型、逻辑型或因子型),是最常用的数据结构。通常,数据框中的行表示观察对象(也叫观测/observation),列表示变量(variable)。
(e) 列表(list)像一个大抽屉,可以将若干(可能无关的)数据信息整合到单个数据结构中。这里的数据信息可以是包括列表在内的五种数据结构中的任意一种或几种。在R中,由于许多函数的运行结果都是以列表的形式返回的,因此该类数据结构也是学习的重点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12