京公网安备 11010802034615号
经营许可证编号:京B2-20210330
spss稳健性检验步骤_稳健性检验的方法spss_spss稳健性检验怎么做
SPSS中进行稳健性检验一般都用什么方法
稳健性估计一般针对于异方差的,SPSS要处理异方差要先对构建的模型进行诊断,看散点图虽然直观但有时也不好明确是否存在异方差,要是看检验统计量的话还要手工进行计算很麻烦。所以涉及到内生性、异方差等问,SPSS能做的可能就有限了。这时一般寻求eviews或Stata等更专业的软件。比如stata要得到模型的稳健性估计结果,直接在模型语句后面加一个robust就完事了,而SPSS则很麻烦。这种条件下如果非要由SPSS做,建议有二:一是诊断模型是否存在异方差;二是如果存在异方差,那么模型就用加权最小二乘法进行估计。

稳健性检验的方法spss
相关性检验与稳健性检验问题
(一)在做相关性检验时,某自变量指标与因变量正相关,而在多元回归分析时得出的结果是负相关,这是怎么回事?还有某自变量指标与因变量指标显著,但是在多元回归时又不显著,这是为什么?
(二)稳健性检验应该怎么做?有哪些方法啊?控制变量换一些含义相同的指标算不算稳健性检验?
spss稳健性检验的方法
稳健性检验检验的是实证结果是否随着参数设定的改变而发生变化,如果改变参数设定以后,结果发现符号和显著性发生了改变,说明不是robust的,需要寻找问题的所在。
一般根据自己文章的具体情况选择稳健性检验:
1. 从数据出发,根据不同的标准调整分类,检验结果是否依然显著;
2. 从变量出发,从其他的变量替换,如:公司size可以用total assets衡量,也可以用total sales衡量;
3. 从计量方法出发,可以用OLS, FIX EFFECT, GMM等来回归,看结果是否依然robust;
如何用spss进行秩和检验,具体操作步骤
spss秩和检验操作步骤:
1、非参数检验,两个或多个独立样本,2个就进入2个的菜单,是多个就进入多个的菜单。
2、秩和检验是把不正态的正态的数据转换为等级对多组进行比较,就像非参数中的方差分析或t检验。卡方检验的范围就广多了,如果是非参数检验里的第一个“卡方检验”,则只是看在一种单一的情况下不同分类属于哪种分布。
补充数据的情况:如是T1-T7只是样本编号,用秩和检验就可以比较A、B、C三种琼脂对某药物抑制大肠杆菌的影响。
怎样用spss做方差同质性检验
无论是单因素的方差分析,还是多因素的方差分析,你可以先打开方差分析的对话框,然后点选“选项”按钮,在弹出的对话框里有方差齐性检验的选项,勾选即可。 方差齐性与否看方差齐性F检验的结果就可以,如果sig值大于0.05,就是齐性,适合做方差分析。 按说不齐性是不可以进行后续的方差分析的,因为在均值检验中(包括方差分析,T检验等)各个实验处理的效应被认为是一种固定效应,对所有人的作用一样,也就是说,处理的作用就是给每个人原来的的水平加上一个相同的常数,这样的话,每个被试组原来什么方差,实验处理后还是什么方差,那么,如果不同被试组的方差不齐性,也就是方差之比显著不等于1,就说明被试之间原本就差异很大,那我们的方差分析就得不到准确的结论,不知道究竟是实验处理造成了不同被试组间的差异,还是说这里面也混淆了个体差异。 方差不齐性,原则上不能进行方差分析,但spss里的方差分析是在最小二乘法的框架下做的,和教育及心理统计教材中介绍的方差分析的分析方式不太一样,好处是这样的方差分析比较稳健,对于方差齐性的问题不敏感,即使违反了,也还是能用,结果也还是比较可信的。在spss里面齐性并不是方差分析的必要条件。只不过教材是为了给你介绍大概原理,而且对最新的软件的性能也不是非常了解,所以非要齐性。况且做方差分析的论文里面一般也不会报告齐性检验。所以你就直接用方差分析就行了。 如果还是不放心,可以做一些数据转换,使其接近齐性,比如box—cox转换,对数转换等等。
spss方差同质性检验追问:
但是方差齐性检验是不能超过50个组的,我的数据有180个+_+
spss方差同质性检验追答:
方差齐性检验好像没有组的限制,因为只是方差最大组和最小组相比。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10