
正在利用这些海量的数据来寻求更多的东西的产业是酒店业。在过去,酒店和技术从来没有互相补充,因为酒店从业者一直关注有形的东西。他们更愿意花时间和资源在定义业务区域上,如提高一个地方的氛围,拓宽菜单的选择范围,提高服务交付的质量,而不是专注于技术和大数据。其结果是,企业想提供的和客户想要的之间的距离变大了。因此,由于缺乏对客户喜好的了解,酒店业从业者使得企业效率低下并且盈利处于低水平之上。
为了克服这些问题,酒店业开始以一种很显著的方式使用技术,特别是大数据。大数据是关于识别模式和关系的,这些关系存在于可以确定未来趋势的数据和变化的客户喜好之间。有了这些了解,企业可以使得自己的现有产品或添加新的来满足这些客户的期望,这反过来将推动需求,并使得利润增加。
具体地讲,大数据可通过以下方式来提高客户满意度,从而能够提高企业的整体效率和收益。
个性化体验
大数据有充每次给客户提供个性化旅行体验的潜力。当一个企业知道某个特定的客户想要的什么时,它就可以更改其相应的服务。例如,如果一个餐饮企业基于老主顾过去的饮食习惯和他们的社交媒体更新知道老主顾想要什么,那么它就可以提供这样的菜单选项。特别是当客户有饮食禁忌时,如素食主义者或犹太教,这些信息就会派上用场,
这样的策略在许多方面被证明可以为公司带来经济利益。首先,客户对服务很满意,那么他们肯定会再次光顾生意。其次,更重要的是,这个客户很可能会向朋友和家人推荐这个地方。该建议将带来更多的客户,而公司则不用在营销或广告上花费任何金钱。
创造合适的产品和服务
大数据可以给公司对于他们的产品和服务提供更好的方向感。他们会比以前知道哪些产品将成为热点,使他们能相应地规划自己的业务。例如,它是不难预料,在热天人们会喝啤酒或吃冰淇淋,但了解他们喜欢什么啤酒以及什么口味的冰淇淋是很有益的,使企业能够储存足够数量的合适产品。这个信息就是大数据可以给企业的东西。在更广泛的层面上,大数据有助于最大限度地优化品牌的战术决策并给旅游公司提供更好的控制力。
竞争优势
大数据很可能成为帮助企业获得竞争优势的关键因素。在这个意义上说,大数据工具将是主要的差异化要素,因为所有的公司,无论是新的还是老的,都有机会获得相同的数据量。因此,能够创新和捕捉最深的见解的公司将超越其他公司。
在另一个领域,大数据可以帮助定价。公司将能够预见发展趋势,并调整其产品售价,以使他们的服务对客户更具吸引力。一个典型的例子是租金成本。例如,当船租赁公司,知道更多的人将要在夏季前往它所在的城市,大部分旅客可以负担得起的价格,其竞争对手的价格和其产品的预计需求,那么他们就可以定一个能够吸引客户的价格,并且与此同时又使得公司有利可图。这给了企业竞争优势,因为它的定价决策是有相关数据支持的,这种相关数据能够以比以往任何时候都高的精度来预测客户的消费行为。
谨慎的做法
尽管使用大数据能够带来好处,但企业应该注意一些灰色地带。首先,过度个性化可能会适得其反,因为这将被某些人看作是侵犯隐私权。因此,企业应该利用大数据来提供个性化的体验,但不应该过度的这么做。例如,记者登上飞大西洋航线的飞机,很多东西让她大吃一惊,其中她相邻座位的两名记者竟和她前往同一会议。利用大数据,该机设计了座位安排,使得所有的三名乘客有机会在会议之前就知道对方。在另一方面,只要一个老顾客进来,餐厅服务员就会拿出顾客喜欢的饮料。选择也会基于客户的历史订单推出。虽然这些“服务”,一些人是可以理解的,但是对于想在本次计划尝试新鲜事物的顾客来说,这将是非常不愉快的。
其次,大数据本身并没有多大用处,除非企业以创新的方式使用它来提高他们的业务水准。正是这种创新,给了企业竞争优势,使得产品或服务对用户更有吸引力。
最后,企业应该使用正确的大数据工具以最大限度地利用它。实时分析和深刻的洞察力,将提供真正驾驭它的好处必不可少的新模式。
总之,通过提供新的模式和见解,大数据将对对酒店业产生深远的积极影响。有了这个新的信息,企业能够更好地提供个性化的服务,提升客户满意度,提高运营效率,获得竞争优势,所有这一切最终将使企业获得更高的利润。然而,有一些需要小心,特别是在隐私和侵犯客户的方面。当这些问题得到解决,大数据成为企业和旅客的游戏改变者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13