
SPSS:方差分析之趋势检验
有网友问方差分析可以做趋势检验吗?比如想知道研究对象的指标是否随着年龄的增长有变化趋势时,是否可以用趋势检验得到答案呢?其实SPSS是提供了解决办法的。
〖例题〗已知97名幼儿的体检资料,已建立数据文件child.sav,试按年龄组(age)对坐高(x6,cm)进行方差分析并做趋势检验。
一、数据格式
1、x6(坐高)为数值变量。
2、age(年龄组)为数值变量,共有3个年龄组,其值标签分别为:5-5周岁;6-6周岁;7-7周岁。
二、方差分析
步骤:选择【分析(Analyze)】→【比较平均值(Compare Means)】→【单因素ANOVA(One-Way ANOVA)…】
☆因变量列表(Dependent List),应为定量变量,选择x6(坐高)。
☆因子(Factor)变量,变量值应为整数,选择age(年龄组)。
●注:由于需要进行趋势检验,要求因子变量必须为有序变量。
当因子变量为有序变量时,选择多项式(Polynomial),可进行趋势检验,可将组间平方和划分为趋势成分,并检验因变量在因子变量分组顺序水平间的趋势是呈现线性变化趋势,还是呈二次、三次等多项式变化 。在此选择度(Degree,次数)下拉菜单中的线性(Linear)项。
☆Statistics(统计),选择描述性(Descriptive)和方差同质性检验(Homogeneity of variance test,方差齐性检验)。
并选择平均值图(Means plot)。
二、结果分析
1、描述性(Descriptives)表,5岁组、6岁组、7岁组儿童的坐高平均值分别为58.888、61.424、64.650。
2、方差齐性检验(Test of Homogeneity of Variances)表,Levene统计量(Levene Statistic)为0.176,P=0.839>0.10,按α=0.10水准,可认为3个年龄组儿童坐高的总体方差齐。
3、方差分析(ANOVA)表(红字部分),F=36.767,P=0.000<0.05,按α=0.05水准,故可认为3个年龄组儿童坐高的总体平均值不全相等,各组方差齐时,应采用F检验的结果。
4、趋势检验的线性项(Linear Term)(蓝字部分),F=68.402,P=0.000<0.05,按α=0.05水准,可认为儿童坐高随着年龄的增长呈现线性变化趋势,平均值图(Means Plots)显示:儿童坐高与随着年龄的增长呈上升的线性趋势,两者的结果是一致的。
理论上类似的因子变量为有序变量的情况都可以进行趋势检验,如因子变量为不同药物浓度水平、接触有害因素时间的长短等都可以进行趋势检验,但有个前提条件是分析的资料要满足方差分析的条件。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18