京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:新的管理模式该如何创新_数据分析师
“大数据”时代的到来,不单单是构建企业信息化这么简单,更重要的是企业应该寻求管理模式的创新。对于大数据,更重要的含义是指处理这些海量数据的技术——如何挖掘出这些数据蕴含的巨大的商业价值,如何实现本行业的价值增值。
因此,大数据时代并不是掌握数据,而是利用数据。
传统管理模式遇到的问题
第一,企业商业智能化程度不高
商业智能的概念最早由加特纳集团在1996 年提出,其定义为:商业智能描述了一系列的概念和方法,通过应用基于事实的支持系统来辅助商业决策的制定。商业智能技术提供使企业迅速分析数据的技术和方法,包括收集、整理和分析数据,作为适应“大数据”时代到来的重要技术——商业智能并未在企业中得到普遍的使用。
第二,决策者未意识到数据的商业价值
在这个数据为王的时代,许多企业决策者的意识还禁锢在传统的管理模式中,认为只要实现企业的信息化就能够适应数据爆炸增长的“大数据”时代,虽然企业拓展了获取数据的渠道,但是却很少深层挖掘数据背后的价值,特别是对系统中的微观数据的关注和利用很少。
第三,对决策主体认识的偏差
“决策主体正从商业精英转向社会公众。”社会媒体的出新以及社交网络的普及,社会公众的意见成为企业决策的中坚力量,而企业对决策主体的认识还停留在以咨询公司为代表的商业精英上,并没有将企业的注意力转移到社会公众,这就造成了企业竞争力与产品销量的下降。
第四,数据相关人才的匮乏
“大数据”时代,数据的处理与分析不再是一项由CIO(首席信息官)来承担的任务,它需要整合CIO对信息和技术的理解、CMO(首席营销官)对信息传播规律和渠道的把控以及COO(首席运营官)对信息选择和数据判断方面的能力。因此,在大数据时代,对大数据处理和大数据分析已经超出了信息化的范畴,超出了市场营销的范畴,超出了运营管理的范畴,需要具有综合能力的人才,而大多数企业并没有意识到这种状况,传统的人才引进机制、培养机制、晋升机制限制了数据相关人才的成长。
大数据时代下的管理创新
第一,提高企业的商业智能化程度
企业要想提高商业智能化程度,首先应打好信息化这个基础,信息化并不仅仅是在企业内部实现办公自动化、无纸化管理,更为重要的是要培养组织成员的信息意识和数据质量意识,让每个信息系统的用户意识到数据是系统的生命,高质量、真实的、高可靠性的数据是一个信息系统成功的关键。其次,企业应重视数据挖掘人才的培养与引进,商业智能是由数据仓库、联机分析处理以及数据挖掘等组成,这三方面都需要大量的数据挖掘的人才。
第二,让决策者意识到数据的商业价值
“大数据”时代是一个以数据为王的时代,企业的决策者们应该意识到数据的商业价值:一,将数据与企业的决策相关联,发挥数据的潜在价值;二,沟通,即在企业施行商业智能化的过程中经常与决策者进行沟通,使决策者从不关心数据到关心数据,再到提出需求,当单一系统的数据分析不能满足企业需求的时候,大规模的数据分析系统的建设就顺理成章。
第三,正确认识决策主体
在传统的管理模式中,企业的中高层管理者、领导者以及一些著名的商业精英和咨询公司被认为是决策的主体,而随着社会化媒体的出现以及社交网络的普及,这种传统的决策机制降低了企业决策的正确性与合理性。
第四,培养首席数据官
“大数据”时代下,对数据的处理和分析不再是一个领域的范畴,它需要同时具有信息技术知识、市场营销知识、运营管理知识等综合素质的人才来掌控,CDO(首席数据官)由此诞生,数据归业务部门,应用归IT 部门,这一概念已经被广泛接受。
第五,重视员工的社交网络
传统的组织架构中,很少去关注员工的社交网络,因而导致了这些网络零零碎碎的局面,使得员工在管理实践过程中处于分裂的状态。
当然,这些因素也导致了额外的复杂度。这意味着企业在面对“大数据”时,不仅仅是拿到了一堆数据而已,对于企业来说,更是极大的挑战与机遇。“大数据”正在以复杂的形式,从不同的领域朝企业奔涌而来。本文:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27