
教育大数据市场前景广阔_数据分析师
美国高中生和大学生的糟糕表现——高中生退学率高达30%(平均每 26秒就有一个高中生退学),33%的大学生需要重修,46%的大学生无法正常毕业——在让教育部门忧心忡忡的同时,也让教育科技公司找到了淘金的机会。近些年来,许多教育科技公司纷纷开始抢滩大数据学习分析的市场,竞争极为激烈。
美国的一些企业已经成功地商业化运作教育中的大数据。全球最大的信息技术与业务解决方案公司IBM就与亚拉巴马州的莫白儿县公共学区进行大数据合作。结果显示,大数据对学校的工作具有重要作用。当IBM刚刚开始与这一学区合作时,除了学生成绩不好之外,该县还面临着辍学率已增加到48%的严峻情况。根据联邦政府的《不让一个孩子掉队法》(No Child Lift Behind,NCLB),学生成绩糟糕的地方政府将受到惩罚。为了应对这一巨大的挑战,该县此前已经在学生数据的基础上建立了一个辍学指示工具,并将其用于全县层面的决策。但IBM认为这仍不足以改善莫白儿县窘迫的现状,需要借助IBM的技术支持重新建立大数据,进而利用大数据分析来改善学区内所有学生的整体成绩。
在美国的教育大数据领域,除了处于领先地位的IBM,还有像“希维塔斯学习”(Civitas Learning)这样的新兴企业。“希维塔斯学习”是一家专门聚焦于运用预测性分析、机器学习从而提高学生成绩的年轻公司。该公司在高等教育领域建立起最大的跨校学习数据库。通过这些海量数据,能够看到学生的分数、出勤率、辍学率和保留率的主要趋势。通过使用100多万名学生的相关记录和700万个课程记录,这家公司的软件能够让用户探测性地知道导致辍学和学习成绩表现不良的警告性信号。此外,还允许用户发现那些导致无谓消耗的特定课程,并且看出哪些资源和干预是最成功的。
在加拿大,总部位于安大略省沃特卢的教育科技公司“渴望学习”(Desire 2 Learn)已经面向高等教育领域的学生,推出了基于他们自己过去的学习成绩数据预测并改善其未来学习成绩的大数据服务项目。这家公司的新产品名为“学生成功系统”(Student Success System)。“渴望学习”声称加拿大和美国的1000多万名高校学生正在使用其学习管理系统技术。“渴望学习”的产品通过监控学生阅读电子化的课程材料、提交电子版的作业、通过在线与同学交流、完成考试与测验,就能让其计算程序持续、系统地分析每个学生的教育数据。老师得到的不再是过去那种只展示学生分数与作业的结果,而是像阅读材料的时间长短等这样更为详细的重要信息,这样老师就能及时诊断问题的所在,提出改进的建议,并预测学生的期末考试成绩。
像美国的“梦盒学习”(DreamBox Learning)公司和“纽顿”(Knewton)公司这类领先性的开发者们,已经成功创造并发布了各自版本的利用大数据的适应性学习(adaptive learning)系统。在2012年国际消费电子展的高等教育技术峰会上,世界最大的教育出版公司培生集团(Pearson)与适应性学习领域里的先行者纽顿公司共同发布了主要由培生集团开发的适应性学习产品——“我的实验室/高手掌握”(MyLab/Mastering)。这款产品在将全球范围内向数百万名学生提供个性化的学习服务,向他们提供真实可信的学习数据,让学校通过这些数据提高学生的学习效果并降低教学成本。首款产品将在美国的数十万名学生中使用,包括数学、英语,以及写作等技能开发课。
纽顿的创办人、首席执行官何塞·费雷拉和培生高等教育分公司的总裁格雷格·托宾共同出席了“我的实验室/高手掌握”的发布会并介绍了合作的细节,讨论了高等教育的未来。托宾说:“个性化学习是未来教育的一个关键点。我们把纽顿的技术整合到‘我的实验室/高手掌握’这个产品中,是整个行业进入个性化教育新时代的引领风气之举”。费雷拉说:“从今年秋季起,培生的课程材料将在纽顿技术的支持下,开始适应性地满足每个学生独特的学习需求。学生能够生成大量有价值的数据,纽顿可以分析这些数据,以此确保学生以最有效、最高效的方式学习。这是教育的一个新的前沿领域”。按照已经达成的协议,这两家公司2013年将进一步扩大合作,把大学数学、大学统计学、大学一年级作文、经济学以及科学等领域纳入其产品中去。
此外,由总部设在美国纽约的麦格劳·希尔公司(McGraw-Hill)、总部设在英国伦敦的培生集团和其他出版公司共同开发的“课程精灵”系统(CourseSmart),也允许教授们通过让学生使用电子教科书来跟踪他们的学业进展,并向助教们显示学生的学习参与度和学习成绩等大量的数据信息,只是这一系统尚不具备预测的功能。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14