
大数据是什么?光大银行信息科技部总经理杨兵兵曾经这样说:人本身就是一台可以综合运用大数据的精密仪器。当我们认识一个新朋友,会通过眼睛收集图片信息、用耳朵感受声频信息……如果可能,还可以通过其他人的描述收集这个人的历史信息、个人爱好等等,然后在大脑中对这个人形成一个判断。今天的大数据只是在还原人脑50%的水平。如果说人是一台可以综合运用大数据的精密仪器,那么大数据如何帮助企业这台机器更“精密”起来?
大数据:孵化数据价值的摇篮
自2014年伊始,光大银行科技创新展厅进入“大数据时代”主题展览。展厅通过大数据的一天、大数据应用成果、数据沙盘、互动问答、演示体验、历史数据查询、社区银行热点地图、数据分析等等展览模块,用切身体验的方式告诉人们:大数据是如何帮助光大银行这台机器在经营运转中更“精密”起来的。但是通过这样的体验,人们了解的还仅仅是一部分。
中国光大银行信息科技部人士告诉记者,该行科技创新实验室通过科技前瞻性创新助力银行业务快速发展,近年来已孵化出“公司客户在线供应链平台”、“非接触移动支付”、“瑶瑶缴费”、“电子支付交易市场资金监管”、“社区银行VTM”、“O2O餐饮收单”等应用创新业务。大数据时代,在提升效率、降低成本、加强风控、创造价值等等诸多方面,光大银行创新实验室通过数据应用为银行业务发展的贡献度正在显现。
用数据发现业务服务客户
谁是潜在的客户?客户需要什么样的服务?利用大数据社交媒体技术进行数据分析,光大银行制作出了“云图”,云图为业务部门新拓展供应链或拓宽现有供应链网络,主动发现有价值客户提供了全面、准确的数据,同时也为银行根据客户特点提供个性化服务提供了依据。
据不完全统计,光大银行信息科技部门数据服务人员全年须完成人均近1000项业务部门提出的数据服务需求,如何组织有限人员完成以上海量的服务需求?光大银行创新提出开放式数据服务社区理念,并建设成服务平台,利用“中文语义智能分析”技术,使得数据服务资源共享、知识共享成为可能。此举还曾荣获由中国人民银行颁发的科技发展二等奖,是大数据技术驱动优质服务的最佳实践。
同时自2012年启动“智慧分行科技行”主题活动,通过在总、分行之间进行数据分析与服务的互动、培训,将数据运用能力有效传导至分行,两年内推动实现近350项数据分析业务营销活动,激发分行业务发展活力。
提升营运效率 降低投入成本
2013年,光大银行基于大数据Hadoop技术构建起核心历史数据查询平台,该平台可为客户提供联机历史数据查询应用功能,通过Hadoop技术可使以往需要3-4天的查询时常缩减到当日完成,大大提升运营效率。
光大银行有关负责人介绍,由于该平台采用开放式的大数据应用架构,在软、硬件科技成本投入上较传统技术架构应用节省近百分之八十的费用,大幅降低投入成本。这也是国内将Hadoop运用于银行在线运营业务的首个成功案例。 大数据为风险管理保驾护航风险管理是作为金融企业的银行必须具备的核心竞争力,在此方面,大数据的作用也在显现。
围绕着风险管理,近年来光大银行全面打造“风险预警平台”,该平台利用互联网大数据挖掘技术、文本数据分析技术以及风险欺诈数据挖掘模型技术,将网络舆情、监管信息与企业账务流水、财务报表数据进行关联分析,通过事件驱动覆盖客户信用风险、账户风险、财务风险、关联风险、声誉风险、经营风险等风险事前预警。在单一客户预警的基础上,还深度挖掘企业与关联企业、企业与关联个人、个人与关联个人之间的关系,使认定的风险预警信号得以传导给与客户相关联的其他客户,更为高效的发现风险,为银行贷后风险管理构建起一道强有力的大数据信息屏障。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14