
毫无疑问,大数据成了2012年的热门词。根据国外统计机构的报告,大数据处理在今年的市场规模已经达到700亿美元并且正以每年15-20%的速度增长。几乎所有主要的大科技公司都对大数据感兴趣,对该领域的产品及服务进行了大量投入。其中包括了IBM、Oracel、EMC、HP、Dell、SGI、日立、Yahoo等,而且这个列表还在继续。
IBM也在2011年中旬对外发布了针对大数据处理和分析技术:在SmartCloud平台上新增基于Apache Hadoop的服务InfoSphere BigInsights分析软件。在日前举行的中国程序员、数据库工程师“2011 IBM DB2 迁移之星大赛”媒体活动上。IBM软件集团大中华区信息管理软件总经理卢伟权、IBM中国开发中心信息管理总经理朱辉就相关话题分享了自己的看法。
3年前布局Hadoop研发
据介绍,IBM对Hadoop的研究开始于2~3年前。截止到目前,研究成果涉及作业调度、查询语言等多个方面。作为典型应用成果,IBM InfoSphere大数据分析平台包括BigInsights和Streams,二者互补,Biglnsights对大规模的静态数据进行分析,它提供多节点的分布式计算,可以随时增加节点,提升数据处理能力。Streams采用内存计算方式分析实时数据。InfoSphere大数据分析平台还集成了数据仓库、数据库、数据集成、业务流程管理等组件。
BigInsight整体框架图
BigInsights基础版和企业版均包含了Apache Hadoop和大量的开源软件技术,具体包含的开源项目:
除了开源技术,BigInsights还包含了IBM开发的定制技术:一个文本分析引擎、一个用于商业分析的数据挖掘工具,以实现与企业软件的整合和Hadoop增强的效果。
IBM中国开发中心信息管理总经理朱辉
在IBM中国开发中心信息管理总经理朱辉看来,BigInsights并没有替代OLAP(Online Analytical Processing)或OLTP(Online Transaction Processing)应用程序,但它可以整合其中,用于“过滤大量原始数据并合并结果,将结果以结构化数据的形式保存在DBMS或数据仓库中”。IBM的Hadoop解决方案已经问世了,客户可以进行测试。
Hadoop无法单一解决大数据问题
此外,朱辉认为目前面临的大数据分析和处理问题,业界需要一整套全面的解决方案。“当前任何一种单一的产品都无法完整解决面临的大数据的问题和挑战。现在行业当中大家听得最多的是Hadoop,但我不认为基于任何一个例如Hadoop这样的单一产品就能够解决目前的问题。传统的数据仓库在这当中仍然扮演一个非常重要的角色,至少是海量数据巨大的产生源。”
此外,据当天与会的IBM Big Data开发资深经理王远洪介绍,IBM CDL(中国开发实验室)的研发人员参与了BigInsights项目的全球研发,并积极帮助国内客户在本地验证IBM基于Hadoop的数据分析平台项目。
IBM软件集团大中华区信息管理软件总经理卢伟权
在当天的活动中,IBM软件集团大中华区信息管理软件总经理卢伟权介绍了本次中国程序员、数据库工程师“2011 IBM DB2 迁移之星大赛”活动情况。此次大赛于2011年9月20日在北京正式拉开帷幕,分为预赛、复赛、决赛三个阶段。预赛采取了网上答题的方式进行,选取成绩最好的100名选手进入复赛;进入复赛的选手则根据地域、兴趣自行组队,按照组委会公布的应用相关的方向和领域,向组委会提交团队的Proposal,由评委最终选出进入决赛环节的10支队伍,参加3月14日于北京进行的总决赛。除获得奖金、证书等奖励外,竞赛优胜队伍还将获得参观IBM美国实验室的机会。
在早些时候,甲骨文也曾宣布其大数据系统Big Data Appliance将能够支持Hadoop,而且微软也暗示将在Azure云平台和 Windows Server上对Hadoop进行支持。此外,亚马逊的Elastic MapReduce云服务也是基于Hadoop。可以相信,大数据的解决 方案会受到业界的极大关注。(本文来自:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13