京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析引发旅游业第二次技术革命
航空公司、酒店和在线旅游预订网站都在最大限度发掘数据价值,提升预订转化率、客户满意度和业务收入。
航空预订服务巨头Amadeus的高级副总裁Herve Couturier认为:
我们已经看到了实实在在的大数据商业价值。大数据可以提升预订转化率,降低运营成本,提升业务收入和客户满意度。
上周Amadeus发布了一份报告——《旅游业来到大数据的十字路口》
英国航空
英航(Brithish Airways)的Know Me项目超越了传统的局限于里程的常旅客计划,能够记住更多旅客的个人喜好。例如,通过数据分析发现旅客在短途飞行时倾向选择靠窗的座位,而长途飞行则喜欢靠过道的座位,方便伸展腿部,这类行为都是经验证的会反复发生的模式。
英航将散布在各个系统的所有与旅客有关的碎片数据和历史数据整合起来,发现很多以前被忽视或无法看到的有价值信息,英航还将数据分析推向最前线,甚至驾驶舱的机组成员手里的iPad。
旅游广告公司Sojern
Sojern收集并聚合来自航空公司、酒店、汽车租赁商和信用卡公司的数据,通过机器学习和高级分析极大丰富了用户个人资料,从中可以发现注入“人们什么时候出行、去哪里、有多少人正在旅行,他们喜欢什么品牌,旅行时间和服务等级”等有价值信息。Sojern的大数据分析技术来自Think Big Analytics,一家位于加州山景城的大数据咨询公司。
Sojern的数据分析结果还被航空公司、连锁酒店和汽车租赁商采用,来适时调整价格和服务名目。例如三角洲航空(Delta)和喜达屋酒店(Starwood)可以通过分析过去一个月在纽约和旧金山之间旅行的商务旅客的数据,制定合理的交叉销售策略并调整库存。
Travelocity
著名在线旅游网站Travelocity将大数据分析用于定价、库存和广告。这三个维度的数据每天都会产生供需变化。Travelocity采用拟归模型,最佳交易分析和推荐引擎向目标客户推送最恰当的产品。Travelocity使用Hadoop作为大数据汇集的环境,然后通过分析模型将结果推送给边缘应用,并支持实时决策。
总结
大多数旅游业的大数据分析应用可以归结为三大类:一类是提升企业内部运营效率;二是优化定价和库存;三十为客户提供更好的,基于情景的服务。所有三种分析都面临大数据挑战,旅客产生的各种数据,如目的地、航班、火车、游船、酒店房间、定价等每年都在以惊人的速度增长。
旅游业的大数据革命表现为,开始拥抱网格集群系统、高速分析以及类似Hadoop这样的开源平台。
旅游业的重点已经不再是找到最便宜的机票或最短的航程,而是找到最合适的航班,社交口碑更好,目的地的天气更好,或者有更好的家庭旅馆。
航旅业在上个世纪7-80年代经历了重大技术革命,出现了收益管理、常旅客管理和运营分析,但之后停止创新,直到今天,大数据技术为航空业的第二次技术革命提供了强劲的引擎。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06