
大数据是如何改变球迷体验的
票价成本飙升、观赛视角受限、上个洗手间还要排老长的队伍、没有录制回放……去现场看球赛已经变成了一种麻烦而不是享受。而如今随着网络电视技术的发展,越来越多球迷抛弃了去球场观赛的想法,他们选择呆在家里,在多个屏幕上观看比赛。然而,在大数据的帮助下,球场和体育馆都在提高他们的比赛日体验,让其变得更加舒适、更加个性化、更加拉近球迷与比赛之间的距离。
对于一些球迷来说,去现场看球赛已经变成了一种麻烦而不是享受。去现场观赛面临着各种各样的问题,比如票价成本飙升、观赛视角受限、上个洗手间还要排老长的队伍、没有录制回放,等等,许多球迷选择舒舒服服地坐在自己家里的电视机前看大型比赛,而不是跑出去,经过漫长的路途去球场观赛。实际上,在2011年,ESPN的一份调查问卷发现,只有29%的球迷才愿意去现场观赛而不是坐在家里。
然而,为了得到更好的现场体验,45%的“优质球迷”(他们通常会买季票)会去现场观赛。但是,究竟什么才能构成好的现场体验呢?
现在大数据正在帮我们定义和完善现场体验。大数据和可穿戴技术相结合来为球迷提供更好、更加知识面更广的现场比赛体验。
首先,可穿戴技术在最近几年突飞猛进。运动员、教练和训练员已经接受了可穿戴技术,用这种技术设备来监控和提高运动员的技能表现,通过对心率以及反应时间指标的衡量来监测身体的各项机能,以及是否有脑震荡或疲劳等运动损伤。
不过,现在这种可穿戴技术也可以用来给球迷带来好处。例如,NBA的球场现在使用SportVU,这是一种安装了GPS技术的场内摄像机,用来跟踪球和球员的移动。虽然这项技术的主要目的是用来决定球员何时该休息,克里夫兰骑士就将该技术用作其他目的,他们使用该程序将数据引到其Humungotron中,能在比赛中实时显示球迷的独特统计数据。更为巧妙的是,骑士队还该数据运用到自己的社交媒体营销以及与各类不同广告商的合作关系当中。
但是,了解在比赛中任何给定的时间内的准确统计数据只是知道了大数据能怎样提高现场体验,以及将现场体验变得与坐在家里进行观赛的体验一样舒适的皮毛。在美国,各个球场都通过与像谷歌、IMB以及其他技术公司的合作来努力升级他们的设备,让其变得更加高科技。
例如,萨克拉门托国王队就在2014年的时候与谷歌建立合作关系,给他们的场边工作人员(吉祥物、记者以及舞者)配备Google Glass。然后球迷可以通过他们的移动设备观看现场比赛的特写镜头,即便他们是坐在较高一层的位置上。
另外一个突出的体育馆是李维斯球场,旧金山49人队的主场。李维斯球场拥有一个680Wi-Fi接入端口、12,000以太网端口、40千兆每秒的光纤网络,以及1,700个能够使用蓝牙技术发现球迷位置,给他们指引的无线电信标。对于那些不想排队买食物的球迷,他们还可以安装一个APP,这款APP专为球场球迷设计,当你在用手机观看现场比赛回放录像时,可以用该APP订餐,将食物直接送到球迷的座位上。
巴克莱中心球场利用Vixi让布鲁克林篮网球迷在正确使用话题标签的情况下将他们的推特展示到球场的多个大屏幕上。该球场还采用AmpThink在观众登录使用球场的免费Wi-Fi之前,采集现场观众的数据,这样球队管理层就可以了解更多球迷信息,比如他们在哪里登录,以及他们都使用球场的哪些服务。球迷们已经可以订购食品和饮料送到他们座位上,还可以从各种社交及角度进行比赛回放,在不久的将来他们就可以使用一个应用程序来找到洗手间的排队时间信息,然后以最短的等候时间到达指定的洗手间。
网络电视技术让越来越多球迷抛弃去球场观赛的想法,他们选择呆在家里,在多个屏幕上观看比赛。然而,在大数据的帮助下,球场和体育馆都在提高他们的比赛日体验,让其变得更加舒适、更加个性化、更加拉近球迷与比赛之间的距离。
以下是ESPN所做的关于《大数据能挽救现场体育吗》图解:
在1998年的调查问卷中,有54%的球迷声称他们更愿意去现场观赛而不是坐在家里观看;到2011年,同样的调查问卷显示其比例已经下降到29%。另外一份报告则发现去现场观赛的人群所占比例会随着运动项目的不同而有所不同:有15%的人更愿意去现场观看棒球比赛,在篮球中,这一比例为42%,在橄榄球中比例高达74%。
NFL球队收入占比:
门票收入占15%,全国媒体和赞助收入占58.5%,其他收入占26.5%。
李维斯球场 旧金山49人队主场
超过400英里的光纤,680个Wi-Fi端口,平均每100个座位1个。球迷可以将他们的设备连接到一个每秒40千兆的网络上,较联邦分类宽带快1万倍。
49人队已经开发了一款应用程序,可用来购票、订餐以及观看比赛视频回放。有32%的球迷都认为观看比赛回放的机会首先,影响了他们现场的体验和互动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-07CDA 一级考试内容详解 CDA(Certified Data Analyst)即数据分析师认证,一级考试作为该认证体系中的入门级别考试,主要面向零基 ...
2025-08-07中介分析的 SPSS 结果解读:从原理到实践 在社会科学、医学、心理学等领域的研究中,变量之间的关系往往并非简单的直接影响,而 ...
2025-08-07