京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是如何改变球迷体验的
票价成本飙升、观赛视角受限、上个洗手间还要排老长的队伍、没有录制回放……去现场看球赛已经变成了一种麻烦而不是享受。而如今随着网络电视技术的发展,越来越多球迷抛弃了去球场观赛的想法,他们选择呆在家里,在多个屏幕上观看比赛。然而,在大数据的帮助下,球场和体育馆都在提高他们的比赛日体验,让其变得更加舒适、更加个性化、更加拉近球迷与比赛之间的距离。
对于一些球迷来说,去现场看球赛已经变成了一种麻烦而不是享受。去现场观赛面临着各种各样的问题,比如票价成本飙升、观赛视角受限、上个洗手间还要排老长的队伍、没有录制回放,等等,许多球迷选择舒舒服服地坐在自己家里的电视机前看大型比赛,而不是跑出去,经过漫长的路途去球场观赛。实际上,在2011年,ESPN的一份调查问卷发现,只有29%的球迷才愿意去现场观赛而不是坐在家里。
然而,为了得到更好的现场体验,45%的“优质球迷”(他们通常会买季票)会去现场观赛。但是,究竟什么才能构成好的现场体验呢?
现在大数据正在帮我们定义和完善现场体验。大数据和可穿戴技术相结合来为球迷提供更好、更加知识面更广的现场比赛体验。
首先,可穿戴技术在最近几年突飞猛进。运动员、教练和训练员已经接受了可穿戴技术,用这种技术设备来监控和提高运动员的技能表现,通过对心率以及反应时间指标的衡量来监测身体的各项机能,以及是否有脑震荡或疲劳等运动损伤。
不过,现在这种可穿戴技术也可以用来给球迷带来好处。例如,NBA的球场现在使用SportVU,这是一种安装了GPS技术的场内摄像机,用来跟踪球和球员的移动。虽然这项技术的主要目的是用来决定球员何时该休息,克里夫兰骑士就将该技术用作其他目的,他们使用该程序将数据引到其Humungotron中,能在比赛中实时显示球迷的独特统计数据。更为巧妙的是,骑士队还该数据运用到自己的社交媒体营销以及与各类不同广告商的合作关系当中。
但是,了解在比赛中任何给定的时间内的准确统计数据只是知道了大数据能怎样提高现场体验,以及将现场体验变得与坐在家里进行观赛的体验一样舒适的皮毛。在美国,各个球场都通过与像谷歌、IMB以及其他技术公司的合作来努力升级他们的设备,让其变得更加高科技。
例如,萨克拉门托国王队就在2014年的时候与谷歌建立合作关系,给他们的场边工作人员(吉祥物、记者以及舞者)配备Google Glass。然后球迷可以通过他们的移动设备观看现场比赛的特写镜头,即便他们是坐在较高一层的位置上。
另外一个突出的体育馆是李维斯球场,旧金山49人队的主场。李维斯球场拥有一个680Wi-Fi接入端口、12,000以太网端口、40千兆每秒的光纤网络,以及1,700个能够使用蓝牙技术发现球迷位置,给他们指引的无线电信标。对于那些不想排队买食物的球迷,他们还可以安装一个APP,这款APP专为球场球迷设计,当你在用手机观看现场比赛回放录像时,可以用该APP订餐,将食物直接送到球迷的座位上。
巴克莱中心球场利用Vixi让布鲁克林篮网球迷在正确使用话题标签的情况下将他们的推特展示到球场的多个大屏幕上。该球场还采用AmpThink在观众登录使用球场的免费Wi-Fi之前,采集现场观众的数据,这样球队管理层就可以了解更多球迷信息,比如他们在哪里登录,以及他们都使用球场的哪些服务。球迷们已经可以订购食品和饮料送到他们座位上,还可以从各种社交及角度进行比赛回放,在不久的将来他们就可以使用一个应用程序来找到洗手间的排队时间信息,然后以最短的等候时间到达指定的洗手间。
网络电视技术让越来越多球迷抛弃去球场观赛的想法,他们选择呆在家里,在多个屏幕上观看比赛。然而,在大数据的帮助下,球场和体育馆都在提高他们的比赛日体验,让其变得更加舒适、更加个性化、更加拉近球迷与比赛之间的距离。
以下是ESPN所做的关于《大数据能挽救现场体育吗》图解:
在1998年的调查问卷中,有54%的球迷声称他们更愿意去现场观赛而不是坐在家里观看;到2011年,同样的调查问卷显示其比例已经下降到29%。另外一份报告则发现去现场观赛的人群所占比例会随着运动项目的不同而有所不同:有15%的人更愿意去现场观看棒球比赛,在篮球中,这一比例为42%,在橄榄球中比例高达74%。
NFL球队收入占比:
门票收入占15%,全国媒体和赞助收入占58.5%,其他收入占26.5%。
李维斯球场 旧金山49人队主场
超过400英里的光纤,680个Wi-Fi端口,平均每100个座位1个。球迷可以将他们的设备连接到一个每秒40千兆的网络上,较联邦分类宽带快1万倍。
49人队已经开发了一款应用程序,可用来购票、订餐以及观看比赛视频回放。有32%的球迷都认为观看比赛回放的机会首先,影响了他们现场的体验和互动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06