
车轮互联关勇打造以大数据为核心的开放平台
面对汽车电商风口的到来,2015年5月7日,易观智库联合奥美国际举办了汽车产业互联网峰会。大会邀请行业人士共同探讨了“互联网+汽车”时代的机遇和挑战。下午,车轮互联联合创始人关勇做了主题演讲,与大家分享了相关的前景和发展。
从工具到社区到服务平台的商业模式
谈到车轮互联,大家脑袋里第一时间想到的就是这个图案,车轮不是卖轮胎的公司,我们是一家互联网公司,没有任何线下的团队在做任何线下的事情。到目前为止车轮已经成立两年多,我们有超过1.5亿的APP下载量,现在月活跃用户超过2300万,现在有十及款垂直于移动端的满足车主的生活服务产品。能够在移动端满足用户360度车主的汽车需求。经过两年多的发展,我们在线上的运营和推广过程中,也摸索出了一些经验,迄今为止我们在IOS常年在前几十名,在安卓应用市场里面都是S级和A级的应用。我们也跟很多大佬建立深度的合作,不是为了赚钱,也不是为了通过大佬获取更多的流量和用户,合作的原因,能够跟大佬合作证明了我们有这个服务能力,通过大佬为我们的服务能力做背书。车轮在成立的初始,未来基于车轮的发展我们要经历哪几个阶段,规划了三个阶段,第一个阶段我们会先做工具,先做工具的原因是什么,因为工具很容易找到用户的痛点,满足用户在某一个垂直领域的垂直需求,我们做工具用了两年的时间,现在是中国汽车移动互联网端最大的平台,积累了海量的用户。我们希望在第二个阶段我们能够做一个平台,基于移动端的平台,智能匹配用户,用户属性、用户需求的平台。能够产生社交关系的,能够引导用户产生更多并发性行为,所以我们要做社区。我们要做一个基于车主服务的社区,我们要体现出我们社区的主属性,体现出我们社区的主导性。谈到社区要做的车主社区不是伪命题,在今天我们看到有车友会,车主和车主之间会基于对方车会认同这个车,能形成一定的社区和社交的范围。我们的社区没有诞生之前我们已经基于工具有了很粗的大腿,我们的工具,这些工具的用户都会成为社区里面的种子用户。在第三个阶段,我们希望去做一个服务平台,以车轮作为纽带,移动互联网作为载体,把很多线下,优秀的合作伙伴聚集到车轮的平台上,通过车轮的平台给我们线上用户提供更多优质的线下服务,做一个很好的合理的有逻辑的整合,我们的用户在线上,服务和体验得到进一步的升级,让我在线下的合作伙伴得到更多的商业机会和商业模式的创新。
价值化和标准化是服务的前提
能够做服务平台也要具备几个前提,我们给线下的合作伙伴输出价值的能力,迄今为止我已经跟很多线下平台方的合作伙伴都有合作,在新车、二手车、保养、车险各个领域里面我们都做了很多的测试。给我们的合作伙伴提供价值的能力是非常强的。举个例子,我现在是易车除了自己的主平台以外最大新车交易例子来源,我每天会有数万辆的,我提供二手车的例子可能超过58、或者赶集,第一个要给合作伙伴创造足够多的价值。第二个是要足够理解市场。最早两年多之前,我跟我的合伙人都是做游戏的,我们根据不懂汽车市场,我们可以跳出这个圈子用第三方的眼睛看这个市场,看产品创新,未来怎么玩,我们在用游戏的方法在玩汽车产品。
第一阶段对接所有的服务都是标准化的服务,合作伙伴赢、我们赢、我们的用户赢。有三个点,工具的特点是可以快速吸引大量用户的下载,大量的流量,把工具进行双向的分发,一方面分发到社区,同时会把工具的用户带到服务的平台里,让用户在服务平台里面得到更好的服务。同时在社区的互动板块摘离出来,让服务平台不至于变成干巴巴的服务导航。同时把服务平台以后服务板块摘出来,让整个平台的服务属性变得更强。
数据产品化是发展的方向
车轮是家移动互联网公司,对我们来说最重要的不是市场,不是BD而是产品,一直秉承几个大的原则,所有的产品都是给用户提供服务的,无论是社区、工具都是提供服务的。在基于差异化服务的基础上,所有的用户行为希望数据化,在拿到用户在产品体验过程中的大数据不是要卖钱,要商业化,要看到我们的缺点在哪里,优点在哪里,同时优化我们的产品。数据产品化是我们一直很坚持的一个点。
在移动互联网时代我们认为快是很重要的,我们认为移动互联网是唯快不破的,要抓重点,抓住足够多的重点才能有足够多的精力去做足够对的事情。创新,当然在中国创新是有风险的,要不要创新,我认为还是要创新。数据,一定要全盘思考,不要决定一个点。车轮是家数据公司,让我们看到风险在哪里,未来怎么做,我们做的所有事情都是以数据为核心的,做开放平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17