
汽车营销中的大数据味道
随着互联网时代的来临,汽车企业的营销策略正在发生着变化,数字营销似乎已经成为汽车企业的必修课。车企营销越来越看重两点:一是是否能够精准到达目标消费群体,二是是否具有较高的潜在客户转化率。
随着互联网时代的来临,汽车企业的营销策略正在发生着变化,数字营销似乎已经成为汽车企业的必修课。车企营销越来越看重两点:一是是否能够精准到达目标消费群体,二是是否具有较高的潜在客户转化率。
实际上,在一些互联网与IT企业那里,数字营销中最为关键的信息已经可以被精准地送达到目标人群,其效果也可以被量化。如在一些网站的搜索引擎上,根据网民对汽车相关产品的关注度,即可知道当下最为流行的整车产品是什么,最为畅销的汽车养护用品是什么,一线城市与二三线或三四线城市关注点有何不同等问题。
真实转化当为先
对于车企而言,在针对人群的精准营销之后,企业最为关注的当属转化率,即把目标人群转化为真正客户的能力。
在前不久于重庆举办的“2015全球汽车论坛”上,来自长安汽车、德勤咨询与汽车之家的几位专家对于车企用大数据建立市场营销的策略谈了自己的看法。
汽车之家副总裁韩松介绍,假设某车主都在长安汽车买了某一款产品。如果用汽车之家的大数据,就可匹配分析出这个用户,在购车前6个月甚至前一年购买了什么品牌产品?关注什么车型?浏览论坛、资讯的时间分别有多长?在这期间一共关注了多少产品?在哪一个阶段决定下订单,最后在哪一个时间点购买完成消费动作。
这一切基于用户的基础分析,最后形成购车属性,它可以帮助主机厂真实还原消费者的决策动机。
其实,基于大数据的场景有三个:检测、发现、预见。韩松讲起了一个经常会发生的现象:“通常情况下,每一个厂商或者他们出的每一款车都会锁定自己的竞争对手。一个非常有意思的现象是:主机厂在前期传播的时候完全选错了对手,而消费者选择的是不同的品牌和几个不同的产品,这样导致厂商在营销策划上有偏差。”
注重数据的完整性与时效性
作为搜索引擎或网站的搜索接口,搜索作为消费者信息主动获取的首选入口,通过借助cookie实现追踪,帮助汽车厂商有效获取消费者行为数据,并借助大数据专业分析技术,实现消费者“画像”,从而有效地实现消费者洞察,让汽车厂商更好地了解目标受众感兴趣的车型,从而能相对精准地把握营销时间、地点来进行广告投放,实现真正意义上的精准营销,这是近几年相当多的厂商经常做的事情。
德勤中国汽车行业管理咨询主管、合伙人何马克博士表示,根据大数据统计的结果,中国有3亿年轻人,都有购买汽车的计划。在国外只有40%的消费者对经销商的体验感兴趣,愿意从经销商那里购买,但是在中国这个数据可能会达到60%。
对于大数据与汽车营销,尤其是潜在消费者能否转化为现实用户的问题,来自长安汽车产品策划部的副部长余成龙博士有他自己的看法:“不管是工业4.0也好, 哪怕是将来进一步发展到更高层次,作为一个企业来说还是要生存,生存的根本就是用户。如果没有用户买单,哪怕这个企业跑得再快,还是没有用。”
对此,韩松表示,汽车之家从一个用户最开始关注车,到选车、用车,关注他/她的整个消费周期,只有把消费者各个环节的行为数据包括互动数据、交易数据都拼凑在一起,才能形成一个完整的“画像”,这样才能在维持和保住客户上具有更加主动的能力。因此,最为关键的除了数据量,还有数据的完整性。
同时,韩松也提醒,大数据如果分散在各个数据公司当中是没有任何价值和作用的。如果某个消费者的各种信息分布在各个相关公司的数据库里,都不能发挥足够的作用。如果大家都以透明开放协作的状态,把这些拼接在一起,才会出现立体的形式。
对于数据的时效性,韩松也表示,可能大数据的结果就是在二三个月之内有用,过了3个月消费者的倾向可能就变了,也就是说之前的结论可能完全是错的。这就需要主机厂在营销应对上,甚至在产品的匹配上要有快速反应机制,而这个机制现在大多数厂商不完全具备。
未来汽车本身也是数据产业
对于包括后市场在内的整个产业链而言,未来汽车产品本身可能将不再是汽车企业的主要盈利点,汽车产品上所搭载的定制化服务,以及用户在使用服务时所产生的行为数据信息,才是未来汽车生态链中的最大盈利因素。大数据企业AdTime认为,以分析用户需求为目的客户“画像”是目前很多汽车企业正在探索的方向。
汽车数据营销通常是多方面的,一是利用汽车营销数据来提升经营效益,帮助汽车企业实现更高的销售效率,同时简化内部规划和执行流程;二是优化跨渠道的客户体验,开辟多渠道来获悉用户体验方面的信息,并集中进行整合与分析,创造出新的服务模式;三是基于用户信息进行的数据增值性服务尝试,比如汽车企业可通过用户信息,预测车辆将要去哪儿以及去的原因,从而为用户提供合适的服务和广告资讯。
AdTime认为,汽车大数据的定制化推送服务能够成为现实,汽车将成为互联网时代的另一种重要终端,未来可能改变的将不仅是汽车行业的商业模式,还将带动更多消费类行业的营销渠道。同时,这种基于汽车数据的互联互通,会为智能车载和交通互联以及车联网的实现提供基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07