京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据告诉你 中国家庭教育存在哪些误区
身为与孩子朝夕相处的父母,他们所孕育的家庭教育的重要性远高于学校教育。而目前中国学生的家庭教育“缺位”了吗?它是否偏离了轨道?中国教育科学研究院日前发布的《小学生家庭教育现状调查》(以下简称《调查》)提供了一份参考答案。
1.半数家长仅以“学习”为亲子沟通的主要内容
《调查》显示,当问及学生“关于你的话题,父母聊得最多的是什么”时,几乎半数的学生都选择“我的学习”。
对于这个“第一要务”,子女又有什么感受呢?
《调查》表明,6.35%的小学生明确表示“别老跟我提学习的事”,还有近四成小学生的愿望是“爸爸妈妈抽时间听我说说心里话”。
2.亲子沟通,不仅内容不讨喜,方法也有问题
亲子沟通,不仅内容不讨喜,方法也有问题。当问及小学生“你最不喜欢的沟通方式”时,从高到低的排序分别为:“总把大人的想法强加给我”(28.43%),“不认真听我说话”(28.00%),“总是打断我”(24.69%),“总把我当小孩”(18.66%)。
而那些缺乏亲子沟通方法技巧的家长们觉得,主要原因是“找不到好的沟通方法”(28.51%),“孩子不愿对家长说心里话”(12.25%)。
“造成亲子沟通困难的以上原因,均可以通过家庭教育指导进行调整和改善。美国心理学家用了三年时间对两万名未成年人的调查表明,能常将日常生活中的事向父母倾诉的人,出现吸毒、酗酒或学业成绩欠佳等现象的可能性较小。由此说明,小学生家庭中亲子沟通的方式和效果十分重要。”《调查》分析道。
3.家庭显性学业支持投入过度,实际上,家庭教育经济投入与小学生学业水平无明显相关性
本次有关“家庭教育支出”的调查发现,近三成小学生家庭教育消费支出负担过重,逾五成家庭仅“刚好能承受”教育支出压力。
如此投入能否提高小学生的学业成绩?
《调查》表明,家庭教育经济投入与小学生学业水平无明显相关性。“通过对不同家庭教育支出水平与学业成绩的比较发现,在子女学业优秀的小学生家庭中,教育支出占家庭总收入5%以下的家庭比例为13.16%,占5%-10%的为31.27%,占10%-20%的为28.95%,占20%-30%的为14.92%,占30%以上的为11.70%。没有表现出家庭对小学生的经济投入越高,其学业成绩就能相应提高的情况。”
4.额外作业时间与小学生学业水平之间同样没有直接关系
大跌眼镜的是,令家长趋之若鹜的兴趣班,对小学生学业支持的效果并不理想。“学业水平优秀的学生中,有63.82%的参加了兴趣班;学业水平较差的学生中,更有高达93.95%都参加了兴趣班,两者相差30.13个百分点。”
此外,《调查》显示,额外作业时间与小学生学业水平之间同样没有直接关系,更多的作业时间并不一定带来更好的学习成绩。“在有额外作业的被调查者中,有79.08%的学业水平优秀的小学生和91.79%的学业水平较差的小学生每日都会有额外的作业,且两者相差12.71个百分点。”(晋浩天)
相关阅读:
大数据告诉你哪些孩子学习成绩更优秀
很多家长,往往以为,学校是决定孩子学习成绩的最为关键的因素。所以千方百计、想方设法、挤破头、砸锅卖铁也要让孩子上个好学校。
不过,很多家长机关算尽,也没有想到,好家庭就是一所好学校。与其大费周折让孩子择个好学校,不如从身边做起,给孩子办个好学校。【查看全文】
大数据告诉你 老师为什么不愿意当班主任
调查显示,班主任在待遇上存在着一些不合理现象:首先,班主任待遇偏低,班主任岗位津贴总体水平偏低、班主任岗位的重要性与收入不成正比。其次,不同学段、不同地域的班主任待遇差异明显:中职、普高段高于学前、小学段,主城区高于郊区县,待遇差异较大的现状难以满足我市教育高位均衡发展的需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03