
互联网征信还是讲故事 大数据难大规模应用
最近“摊上事”的则是刚刚起步几个月的征信业务。近日有媒体报道称,央行近日叫停了蚂蚁金服旗下芝麻信用多个营销活动,包括与首都机场快速安检通道合作。不过蚂蚁金服和芝麻信用等方面很快辟谣,称并未收到央行通知,该公司还表示,所谓转账等方式提高芝麻信用分更是无稽。
否认被叫停
今年1月份,央行首次批准8家企业准备个人征信工作。
包括阿里、腾讯、拉卡拉等互联网公司,成为首批试点幸运儿。值得注意的是,相比其他几家,阿里在个人征信服务方面更是十分活跃,除了可视化的“芝麻信用分”产品外,还与神州租车、一嗨租车、阿里旅行、网易花田等一系列第三方尝试商业化合作,涉及租车、交友、网购、住宿等多个领域。尤其是与支付宝合作,更使得“芝麻信用”成为类余额宝网民话题。
不过最近芝麻信用在机场、校园等场景一系列营销活动,也遭遇了部分媒体质疑。财新援引接近央行消息人士称,“芝麻信用机场快速安检通道被叫停”,此外,还有业内人士质疑,用户可以通过互相划款提高芝麻信用分。
“我们没有收到任何监管叫停通知,”9月24日上午芝麻信用发布声明辟谣,称芝麻信用快速安检通道将面向信用分750以上用户继续开放。声明还提道,芝麻信用公测期间,“一直与监管保持良好沟通。”
记者注意到,芝麻信用当天上午还推送了这一服务的消息通知。消息显示,芝麻分在750以上用户可以走首都机场CIP安检通道(国内快速安检通道),活动期限为9月15日至10月14日,具体时间为每天6:30至20:30。
据了解,自1月份开始“准备工作”之后,蚂蚁金服先是向部分用户开放测试,随后在6月份开放全国范围公测。公测期间,芝麻信用启动了无人超市、大学生信用节、芝麻信用快速安检通道等活动,不过该公司并未透露目前参与芝麻信用用户规模。
按照芝麻信用分可视化的结构,其构建目前呈现为“行为偏好”、“身份特质”、“人脉关系”、“履约能力”和“信用历史”等,对应了用户教育职业、消费行为、资产状况、社交关系等方面信息,但对于媒体报道乃至部分坊间观点认为,可以通过网购、互相转账等方式,来提高信用分的说法,芝麻信用也进行了澄清。
“互相划款提高信用分是无稽之谈”,芝麻信用在回应声明中称,这种手法会被芝麻信用的大数据模型识别,不但无效还会给用户信用历史带来负面影响。按照该公司的解释,其征信系统参考数据关系多达数亿条,结合的底层指标超过上万个,数据来源包括电商数据、互联网金融数据、公安网、最高法、教育部、工商等公共机构数据,除此之外还有第三方合作伙伴以及用户自主递交生活、支付、购物、投资、公益等多个场景。
蚂蚁金服内部人士告诉记者,某一维度数据丰富并不意味芝麻信用分高。该人士还表示,芝麻信用也不是所谓“会员”概念,因为平常的积分是只会增加不会减少,而芝麻信用因为多种数据,可能会有所下降。
但对于这个构建在“大数据”概念下的信用维度架构和规则,芝麻信用方面却一直没有对外透露。“如果我们披露的话,就会有人去刷信用。”前述人士表示。
网络征信试水
“央行对于民企做征信,还是有顾虑的,既然是试点,就应该允许探索不同方法,尤其是企业行为,更应该坚持市场导向,有一些市场行为也无可厚非。”中央财经大学教授黄震表示。
在黄震看来,BAT以及其他一些公司,都积累了很多数据,不管是交易、社交乃至交通旅行等方面数据,有一定数据基础和条件的数据公司,都应该鼓励尝试,“哪怕只是一孔之见。”
他同时指出,国外早就有了用各种数据作为征信依据,包括航空公司、大型零售商与银行机构合作,基于一些评级、评价数据分析,推出相关产品服务。
“央行征信中心难以覆盖到个人征信需求,存在瓶颈问题,”黄震告诉记者,国内多个机构、部门数据实际上都不怎么打通,形成了信息孤岛。互联网和大数据技术发展,带动起个人征信尝试,实际和借款、消费信贷等一样,都是将原有垄断打破。
不过黄震认为,现在互联网征信还谈不上颠覆,更重要是数据价值挖掘、联网、开放。
按照芝麻信用的说法,芝麻信用除了阿里系统数据外,还有很多第三方数据,互联网金融千人会秘书长易欢欢则认为,个人征信不管是外在形式如何,娱乐化或者营销模式怎么样,最重要还是要从内在看数据价值挖掘,能否构建起一个可以信赖、验证模型,这也将是一个长期的过程,既需要数据本身积累,与其他各方打通,同时也需要反复验证以提高准确率,“从目前看,阿里和腾讯都在做积极尝试。”
实际上,包括“芝麻信用”以及其他第三方征信产品,最核心构建理念基本都是互联网与大数据,这也为互联网公司津津乐道。
但迄今为止,成熟的商业产品依然有待验证,与此同时,央行也尚未发布真正的个人征信牌照,所以企业也都是“试牌照”。花果金融CEO认为,所谓“大数据”应用,有很大一部分还是出于互联网讲故事因素,“大数据应用于征信确实有一些成功案例,但大规模应用目前还不存在。此外,目前关于大数据很多时候也是出于互联网公司讲故事的需要。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17