京公网安备 11010802034615号
经营许可证编号:京B2-20210330
传统行业 如何快速搭建大数据团队
在越来越多商城沦为“试衣间”、电器卖场沦为“产品体验店”、建材市场沦为“材料展示中心”的今天,越来越多的传统行业已经意识到他们需要变革,需要用大数据的手段来帮助他们突破重围。
大数据的起源要归功于互联网、电商、电信运营商、金融等行业,由于这些行业自身的特点,在生产运营过程中能够天然获取海量的数据,他们是大数据行业的先行者。
但可以断言,大数据更大的需求、有广泛的应用前景仍然在传统行业,大数据将会是传统行业适应互联网时代的最佳结合点。
著名服装品牌ZARA就是传统行业利用大数据为企业重新注入活力的例子。ZARA通过整合线下客户对衣服的体验信息与线上网民喜欢的产品或趋势信息,及时改进产品样式,在互联网时代实现了线下零售店销售成绩的完美逆袭。
那么,传统行业要做大数据团队,要做好2个准备。
1、具备大数据思维
能拿到什么数据?
这些数据有什么用?
怎样用这些数据?
许多餐厅都非常关注如何在空闲时刻的人气聚集问题,比如用优惠的下午茶吸引人气。为达到这个目的,我们可以获取客户的点餐内容、用餐时间、用餐人数,并由服务员顺便收集客户特征的情况(年龄范围,是否家庭聚餐,是否商务宴请等,客户的意见反馈等)。
这样,我们就可以通过大数据知道哪些菜式受欢迎?哪些菜式需要改进?喜欢某个菜式的人到底是什么人?
发现的有些结论会比较明显,是有经验的餐厅管理者能够通过某些传统方式得到的。但是,有一些发现必定是有经验的管理者都难以察觉的。而且,大数据的方式也能够让餐厅管理者的反应更加精准有效、更加迅速。
2、大数据团队,你准备好了吗?
提到大数据人才,往往大家想到的是具备大数据专业知识的专家,显然这个角色在传统行业以往的运作过程中是缺失的。所以,既然要构建大数据团队,必须要有大数据专业背景的人才。
某全球500强的通信运营商重金请国际知名咨询公司做大数据规划,然后压给IT部门按此方案执行,IT部门欲哭无泪,因为如果按这些专家做出的规划来做,公司全部系统、所有流程制度都要推倒重来,所以这个方案完全没法落地。
大数据不能脱离行业和企业本身去谈技术,那是空中楼阁;脱离大数据思维的分析,将导致数据的死应用。
所以,传统企业组件大数据团队,不仅需要大数据的技术人才,还需要有深厚的行业背景并具备大数据思维的勇于变革者。
传统企业在建设大数据团队时,容易陷入3个误区。
误区1:挖个大数据牛人,就能搞定
很多企业认为建设大数据团队,只要把牛逼的人才挖过来,就能够把公司的大数据做好。最终的结果往往是一流的人才来到企业后水土不服,并不能发挥出期望中的作用。
其实不难理解,同样是利用大数据进行客户画像、挖掘客户需求。对于电商而言,在电商平台建设之时,很多数据就已经相对规整的存储系统里了,只需要通过网站流量统计工具,分析用户流量来源和特点;然而,对于传统行业而言,先得搞清楚的是企业内部的运作流程和每个大大小小系统上能够提供什么数据,可能根本没有现成的数据给你。
虽然分析目标一样,但是数据获取方式、业务流程、分析重点、应用场景都截然不同,在电商方面牛逼的大数据人才,可能在某些行业知识上是缺失的,难以适应传统行业。因此,大数据人才的引进需要充分考虑人才和企业的适配性。
误区2:直接交给专业公司,坐等收获
传统企业认为,既然我缺乏大数据团队,那我直接请专业大数据公司、咨询公司搞定就好了,又专业,见效又快。
如果企业如此选择,自己的大数据团队就很难建起来了。专业团队干活时,企业人员参与不够;等专业团队撤离之后,自有团队接不上,原有的大数据成果也会在闲置中最终变得无用,企业在付出巨额酬劳后还是做不好大数据。
误区3:A公司做到很好,直接把经验搬过来
在ZARA建立大数据团队,收集并分析线下客户意见,从而改进产品款式大获成功后,H&M一直想跟上Zara的脚步,希望利用大数据改善产品流程,成效却不明显,两者差距愈拉愈大,这是为什么?
Zara用大数据最重要目的是缩短生产时间,让生产端依照顾客意见,能于第一时间迅速修正。但是,H&M内部的管理流程,根本无法支撑大数据提供的庞大资讯。H&M的供应链中,从打版到出货,需要三个月左右,完全不能与Zara两周相比。
很多企业没有大数据团队建设经验,看到别人的成功经验,就想直接照搬,却没有考虑到不同行业有不同特征,就算同一行业中的不同企业,其组织架构、管理方式、生产方式也有很大的区别,这很可能导致大数据团队建设走上失败。
我们认为,传统企业在搭建大数据团队时,要做到以下几点:
1、老大不参与?那可不行
中国有句老话叫做“屁股决定脑袋”,具体办事人员往往难以在全局和宏观的高度把握大数据对于一个企业的应用规划和价值。
企业推行大数据的最终目的,是要让它成为公司决策的“大脑”、市场销售的“指挥棒”,说到底,大数据要能够支撑方方面面的工作,是整个企业级别的大事。
所以,大数据战略的推进,需要企业领导者充分参与,才能保证不跑偏。否则,大数据项目只会沿袭旧有的运营模式或流于形式。
2、先内部“组队”,专家只能做“外援”
企业做大数据要先组队:除了“外援”,自己企业里搞IT建设的、做市场的、做销售的、做服务的、搞管理的都得配上。简单来说,就是这个队伍里,必须有“做数据”的人、“分析数据”的人和“用数据”的人。
“外援”总归是要离开的,只有通过大数据的前期实施,实现自己大数据团队的快速成长,最终才能达到自有团队独立、持续应用大数据的目标。
3、先尝尝大数据的“味道”,再谈怎么做
很多企业做大数据,一开始就大张旗鼓做建设。要知道大数据平台一旦建起来,若是不好用或是有问题,再来改,搞不好就是全盘颠覆。
所以,建议在建大数据平台之前,先花一点时间做大数据的尝试。比如,对于要开展的一个促销活动,给出大数据的支撑。即便是最简单的大数据尝试,也能让我们发现搭建大数据体系时可能存在的问题。
4、做大数据就得“私人定制”
数据拿不到?流程走不通?系统和系统之间无法交互?这些看似不大的问题,却是大数据在未来是否能够发挥效力的底层基础。把好企业的脉,发现潜在的问题,才能够最大程度的发挥大数据的效力。
结束语
互联网诞生时,有人说“在网上,没人知道你是一条狗”。大数据时代,我们不但知道你是一条狗,而且知道你是一只小资、很宅的金毛,知道你爱吃RoyalCanin的狗粮,还知道你喜欢红色。
任何时代的变革,一旦开始就不可逆。传统企业要做的,是顺应变革,快速组建自己的大数据团队,借以发现属于自己的机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20