京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 “脏数据”无处不在且危害大
数据时代已经到来。大数据的应用层出不穷,正改变着公共决策、企业管理、市场营销以及生活的方方面面。我们知道,大数据要发挥作用,有一个前提就是数据是好的数据。所有数据都是好的么?当然不!因此大数据时代还需警惕“脏数据”。什么是“脏数据”呢?简单来说,就是那些虚假的数据,那些未能反映真实情况、扭曲了真实情况的数据。
那么,“脏数据”是怎样形成的呢?
KPI、利益诱惑
导致主动弄脏数据
淘宝卖家信用等级制度是一个很好的创新,推动了诚信网络购物环境的构建。信用的等级主要依据是交易成功后买家的评分。由于信用等级在买家购物时有着巨大的指导作用,所以卖家都颇为重视自己的等级。这也导致该制度从诞生的第一天起就伴随着“脏数据”。部分卖家挖空心思、弄虚作假争取高的等级:有的采用虚假交易的方式,自己卖给自己,然后给予这次交易较高的评分;“刷信用”、“刷钻”俨然成了一门生意,有不少专门做这个生意的网站;职业差评师也应运而生,很多恶意买家专门以给网店差评为手段向网店店主索要钱财。
微博粉丝数体现了一个人的影响力,同时也具有商业价值。这里也有“脏数据”——僵尸粉,即虚假粉丝、永远沉默的粉丝。自己可以注册多个微博来关注自己;花钱也可以买到“关注”,这些粉丝通常是由系统自动产生的恶意注册用户。
终端销售的代理商为了套取运营商的佣金,用一个虚拟的串号录入系统,自己卖给自己;电信业务销售代理商为了完成运营商下达的任务量,将手机号卡从系统里开出来囤着,放在抽屉里慢慢卖。这些,都能产生巨大的“脏数据”。
能力不足
不可避免地弄脏数据
人为的非故意的差错也会导致数据失真。比如要人为地去统计某个营业厅一天的人流量,若这流量成千上万,即使再细心的工作人员,在数的过程中也难免出现差错;如果这个人本身的算术能力有问题,对100以上的数字计算不过来,那么这数据就更难准确;更有甚者,在数了半天后觉得这工作实在枯燥无聊,于是开了小差,最后虚报了一个估计的数字。
无论是主观故意,还是客观能力,是人都会出错。那计算机就不会出错么?计算机同样会出错,且计算机出错的新闻比比皆是。比如在银行ATM机上取1千元,然后吐钞1万元。一方面,这取决于计算机编程人员对计算规则的理解;另一方面,这还依赖于计算机程序编写人员的能力与细心,若出现编程人员的理解偏差或者编程时未想象到的情形,计算就可能出错。
“脏数据”无处不在且危害大
当数据使用者将“脏数据”当作好数据,加以分析利用,作出决策,并辅以强有力的执行时,“脏数据”带来的后果是极其严重的。通过“脏数据”,会得出错误的结论,错误的结论会导致错误的决策,错误的决策加上强有力的执行,比没有数据、没有结论、没有决策更糟糕,不但不会对事物发展起到积极作用,甚至还可能产生消极作用。
举两个简单的例子,如果购买了上述刷来的黄钻卖家的产品,你可能会觉得名不副实;如果付费找拥有大批僵尸粉的大V来传播商业信息,你的钱可能就会打水漂;如果运营商无视套取酬金及囤卡行为而对销售数字津津乐道并为此乐观的话,不仅让酬金白费,还会得出市场发展良好的错误结论并采取下一步措施。
“脏数据”无处不在且危害之大,因此必须要警惕“脏数据”。当然,这不是一概否定大数据,不是说大数据毫无价值,而是想提醒大家一方面要尽可能提高数据质量,另一方面也不能完全依赖大数据。
无论是淘宝、新浪,还是电信运营商,都对数据造假者深恶痛绝,都想出了很多办法来消除“脏数据”。显然,这是道与魔的关系,是一个不断纠缠、不断提升的过程。没有任何一种制度或者技术能百分百消除“脏数据”,但只要态度明确并不断采取措施,就能将“脏数据”控制在一定程度,确保所用数据偏离不会太多且具有使用价值。
大数据不是万能的,伴随着“脏数据”的大数据更不应该被迷信。大数据的使用还需要与经验、实证相结合。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28