京公网安备 11010802034615号
经营许可证编号:京B2-20210330
智慧城市的大脑 大数据分析与决策
随着首钢园区智慧城市五大能力的建设,平台战略稳步向前推进,各类型平台沉淀下来了海量的数据,如空间数据、民生数据、经济数据等。这些数据如金子般珍贵,如何合理充分地利用这些数据是首钢园区智慧城市建设成败的关键。
一、大数据分析与决策成为必然选择
智慧城市体系架构可分为四层,分别为感知层、传输层、平台层、应用层。感知层是智慧城市体系对现实世界进行感知、识别和信息采集的基础性物理网络,海量的数据在感知层产生。由城市数字化到城市智慧化,关键是要实现对感知层获取的信息的智慧处理,其核心是引入了大数据处理技术。
智慧城市的大脑 大数据分析与决策
智慧城市建设不仅仅需要有众多的摄像头、传感器等来收集信息,更需要有一个智慧的大脑系统,来统筹管理和运用好收集到的信息。一个智慧城市的建设,是离不开强大信息处理后台系统的建设的。只有建立起相应的处理能力,才可以将这些收集到的信息用于更加有效、科学的城市管理,提供更好的服务。大数据技术,对数据进行深度融合、综合分析和挖掘,以获得更有价值的信息。
二、大数据分析与决策对于智慧城市建设的重要意义
智慧城市的建设离不开大数据,大数据将遍布智慧城市的方方面面,从政府决策与服务,到人们衣食住行的生活方式,再到城市的产业布局和规划,直到城市的运营和管理方式,都将在大数据支撑下走向“智慧化”,大数据将成为智慧城市的智慧引擎。
大数据分析对于智慧城市建设的重要意义主要体现在以下五个方面:
1、大数据分析为智慧城市的各个领域提供强大的决策支持。
在城市规划方面,通过对城市地理、气象等自然信息和经济、社会、文化、人口等人文社会信息的挖掘,可以为城市规划提供强大的决策支持,强化城市管理服务的科学性和前瞻性。在交通管理方面,通过对道路交通信息的实时挖掘,能有效缓解交通拥堵,并快速响应突发状况,为城市交通的良性运转提供科学的决策依据。在环境监测方面,构建大数据监控分析平台。深度监控排污企业生产、排放、存储、运输各个环节,从源头上消除企业监控数据造假的可能性,为监察部门提供可靠的执法依据,并结合环境监测数据,挖掘企业排污对当地环境的影响。
2、大数据分析能够给智慧城市的管理和服务系统提供新的洞察力。
城市的各项管理和服务是持续进行的,日积月累,自然会形成大量数据的积累,在这些数据中也必然隐藏着对这个城市一些潜在特征的描述。社会科学的很多规律和经验,在海量积累的数据里自然存在着,在等待我们去发现和了解,从而为城市的智慧化、精细化管理提供决策依据。例如,各城市还可以根据对环境监测历史数据的综合分析,预测火灾、水灾等自然灾害的发生规律。
3、大数据分析是避免“信息孤岛”提高资源利用率的必要手段。
“信息孤岛”现象很普遍。大数据技术对解决上述难题提供了新的希望。大数据技术能够在收集智慧城市各模块数据的基础上,对数据进行交互分析,从而建立起基于数据的、超越传统感知和经验的辅助决策系统。大数据使数据共享成为可能,政府各个部门的既有数据库可以实现高效互联互通,极大提高政府各部门间协同办公能力,提高为民办事的效率,大幅降低政府管理成本。
4、大数据分析将提高城市居民的生活品质。
与民生密切相关的智慧应用包括智慧交通、智慧医疗、智慧家居、智慧安防等,这些智慧化的应用将极大地拓展民众生活空间,引领智慧城市大数据时代智慧人生的到来。大数据是未来人们享受智慧生活的基础,将改变传统“简单平面”的生活常态,通过大数据的应用服务,将使信息变得更加泛在,使生活变得多维和立体。
5、大数据分析将大大提高企业的核心竞争力。
大数据处理将决定企业的核心竞争力。掌控数据就可以支配市场,意味着巨大的投资回报。过去很多企业对自身经营发展的分析只停留在简单业务信息层面,缺乏对客户需求、业务流程、平拍营销、市场竞争等方面的深入分析。在大数据时代,企业通过收集和分析大量内部和外部的数据,获取有价值的信息。通过挖掘这些信息,企业可以预测市场需求,进行智能化决策分析。
三、结语
智慧城市的大数据时代已经到来。充分利用以大数据技术为支撑的综合智能化分析和决策系统,才能使智慧城市的管理系统和服务系统充分、有效、合理地发挥各自的作用,大数据正是智慧城市建设和运营的基石。首钢园区的智慧城市建设,要从大数据入手,创新智慧产业、优化城市管理、提升服务效率,从而实现智慧城市让城市生活更美好、更幸福的目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03