
大数据催生思维变革、治理创新 政府岂能落后
数据是基础性资源,也是重要生产要素。大数据与云计算、物联网等新技术相结合,正在迅疾并日益深刻地改变人们的生产生活方式。在大数据时代,对于政府来说,一方面应承担起引领、推动大数据产业发展的使命;另一方面应建设政府大数据,实现政务数据资源的公开和共享。
然而,一些人对建设政府大数据还存在模糊甚至错误认识。这主要表现为两点:一是认为政府部门不存在大数据,具有共识性和高价值的政府数据不符合大数据“规模大、形态多、变化快、价值低”的特点;二是政府部门不需要大数据,产业界和应用行业是大数据的发起者和淘金者,大数据对政府工作没有太大价值。这两种观点拘泥于形式化定义,并未深刻认识到大数据对建设现代服务型政府、智慧型政府以及服务社会民生的重大意义。
建设政府大数据、实现政务数据资源共享是助推国家治理现代化的一种技术路径,它具有催生国家治理模式创新的效果,将给国家治理带来路径突破和机制创新。
运用大数据能够提高政府决策和管理水平。现实中,一些领导干部凭经验说话、拍脑袋决策的现象时有发生。这种不符合规律的乱决策常常导致政策在实施过程中与实际情况和群众需求脱节,无法取得预期效果。构建政府大数据库,能够帮助决策者全面了解、准确掌握所需信息,研判发展趋势,提高决策效率和决策质量,从而提高决策科学化、民主化和现代化水平。同时,大数据具有催生思维变革、治理创新的效果,利用大数据能够帮助政府用新的思路和手段解决交通、医疗、教育等公共问题。通过对海量数据的挖掘与分析还可以更好地提供信息等公共服务,助力大众创业、万众创新。因此,政府应正视大数据时代潮流,主动抓住大数据带来的发展机遇。
树立大数据思维,积极主动融入大数据时代。应深刻认识大数据的战略资源地位,顺应大数据发展潮流。转变传统的经验思维和习惯思维,勇做大数据时代的弄潮儿,务实创新,率先垂范,带头开放数据、共享数据、开发数据,构建用数据说话、用数据决策、用数据管理、用数据创新的机制,积极运用大数据进行形势分析、问题研判、精细管理、服务创新。
加强顶层设计,制定大数据发展战略。制定和实施政府大数据发展战略规划、行动计划,明确政府大数据的发展目标、发展策略、发展布局、重点任务和保障措施。成立政府大数据管理机构,统筹数据管理工作,构建国家数据开放平台,形成政府大数据资源。规范国家大数据标准化体系,明确政府部门开展政务数据资源共享工作的权、责、利,加快政府部门数据资源开放进程。研究政府数据开放的内容、机制、程序、途径,逐步完善非涉密信息开放机制。积极探索市场开发模式,鼓励社会力量参与政府数据资源的深加工和再利用,把政府大数据转化成社会财富。
推动政府数据资源共享立法,保障大数据安全。大数据的本质是基于互联网的数据开放共享、互融互通。建设政府大数据,应在保障数据安全的前提下,分层次有序地向企业和社会开放数据。推动政府数据资源共享立法,是保障数据安全的必要之举。以法律的形式明确各级政府部门公开政务数据资源的时间、范围、方式等,确立“政务数据资源共享是常态,不共享是特例”的法律原则。在保护国家秘密、商业秘密、个人隐私的前提下,规范推进政务数据资源跨部门跨地区跨层级共享,增强政府透明度,满足社会需要,推动大数据产业发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03