
大数据发展势头迅猛 数据人才供给问题凸显
近几年,大数据从“可有可无”的边缘迅速演变成“必须获取”的核心。深度挖掘分析把数据变成可操作利用的情报,提供个性化推荐、精细化运营,帮助企业降低成本,增加利润,大数据的作用在逐渐显现。
大数据高速发展的2014年,利用大数据应用,精准广告投放系统、用户个性化推荐、消费热点预测、客户生命周期管理、企业经营策略分析等,互联网企业尤其是阿里巴巴、京东等电商企业成为2014年大数据发展的最大赢家。2014年天猫“双十一”571亿元的交易额是一个很好的佐证。
利用大数据优势,获取更高的利益,大数据发展势头十分迅猛。近年来,中国互联网三巨头BAT(百度、阿里、腾讯)均耗费巨资投入大数据发展,纷纷建立大数据研究院、大数据实验室等,提供大数据专业服务,一批大数据专业分析公司也应运而生。据CSDN(中国软件开发联盟)2014年中国大数据调查报告显示,32.5%的公司正在搭建大数据平台,29.5%的公司已经在生产环境实践大数据,并有成功的应用案例和产品,24.5%的公司已经做了足够的了解,开发准备就绪。
各大公司纷纷上马大数据业务,对大数据人才的需要,市场上正处于十分旺盛的阶段。据Gartner预测,2015年,全球将新增440万个与大数据相关的工作岗位。大数据的发展也会催生出一些新职业如大数据分析师、首席数据官等,据Gartner消息,2015年将会有25%的组织设立首席数据官职位。
然而人才供给的缺乏正是大数据发展面临的一个瓶颈。目前企业发展大数据已步入初级阶段,在记者近期的采访中,不论是拓展大数据业务的百度、阿里、奇虎360等互联网公司,还是专业提供数据服务的大数据服务商,对专业的大数据人才均有较高的需求量。
市场上对大数据人才有着旺盛的需求量,大数据人才培养问题就显得愈发重要。大数据专业服务商中润普达(集团)信息技术有限公司总裁联合创始人杜小军在接受中国经济时报采访时表示:“我们需要的大数据人才是跨专业的复合型人才,既要熟悉计算机技术,又要掌握解构中文的能力,还要拥有建立综合性模型框架的能力。”
大数据的相关职位需要的是复合型人才,要能够对数学、统计学、数据分析、机器学习和自然语言处理等多方面知识综合掌握,但目前国内还没有哪所高校能培养出这样的大数据人才。2015年大数据将会出现更高速的增长,人才需要量将更大,而人才供给则有断档的可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17