京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为电信运营商转型提供强劲动力
互联网特别是移动互联网的迅猛发展使电信运营商网络流量激增的同时收入增长变得愈加困难。建立起大数据驱动体系将帮助运营商开创一片新天地。报告指出,应用大数据系统后,全球移动运营商的客户流失将大大减少,到2018年因减少客户流失所带来的收益将超过40亿美元。该报告称,大数据平台的启用让运营商能够预测客户流失的可能性,并采取预防措施,从而减少收入损失。一些领先的网络运营商已经发现,在应用大数据技术后,客户流失显着减少。
伴随着云计算和大数据的发展热潮,数据作为一种无形资产的价值正在日益得到认可。在大数据时代,电信运营商需要重视并建立大数据体系,掌握大数据技能,发掘大数据价值,从而为自身的转型发展提供强劲动力。
要建立大数据管理体系
电信运营商有着大量的用户数据、业务数据、服务数据和网络数据,经过长期运营,这些数据逐渐积累起来。但是,没有管理的数据就像埋藏在地下的矿产,价值无法体现。运营商当前由于没有全局性大数据管理体系,现存数据信息呈现出碎片、割裂和孤岛状的特点,难以深入应用。
对于大数据的应用已经成为一种必然趋势,其发展势头非常强劲。研究机构Gartner预测,2020年全球超过75%的企业都将在日常的经营和决策过程中引入大数据分析系统,利用大数据的能力逐渐成为企业实现可持续发展的基本素质。
电信运营商掌握着丰富的数据资源,在利用大数据方面具有天然优势。Sysbase发布的分析报告称,电信行业在运营中引入大数据系统后,人均产值将提升17%以上,大数据对于行业发展的贡献排在了所有因素的首位。不过,电信运营商要想充分利用数据资源来创造价值,就必须对现有的IT系统和平台进行升级改造。
实现大数据管理,需要进行运营商IT系统的变革。例如,在网管系统方面,需要打破传统以专业划分的独立网管建设体系,建立能够支撑端到端业务、实现全视景管理的综合平台,便于数据关联;在业务支撑系统方面,由偏重于后台计费账务,转变为关注前台客户服务,同时需要适度集中化,提高数据集规模。实现数据管理还需要增强数据的深度解析与收集能力,以提高对用户、业务和网络的感知能力,加强数据的多样性。
实现大数据管理,需要具备全生命周期的数据平台,打通、整合运营商各类数据,作为管理落地的载体和驱动大数据应用的工具。考虑到数据规模,电信运营商需要在平衡好完整性、一致性和性能要求的基础上,做好平台的集中与分布相结合的全国布局;还应针对热点数据、在线数据、近线数据选择不同方式的存储并根据数据特点进行动态调整,在实现数据快速访问的同时,降低存储成本、优化使用效率。
要建立大数据驱动体系
在建立大数据管理体系和大数据平台的基础之上,要充分发挥大数据的驱动作用,驱动电信运营商经营内涵的升级,驱动管理效率提高,实现更精准的营销,实现商业模式的探索和改良。运营商历来重视业务驱动和技术驱动,大数据驱动可以使运营商多一些互联网思维,用来重构业务、建设、运营模式,使得大数据成为运营商的核心竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20