
大数据为电信运营商转型提供强劲动力
互联网特别是移动互联网的迅猛发展使电信运营商网络流量激增的同时收入增长变得愈加困难。建立起大数据驱动体系将帮助运营商开创一片新天地。报告指出,应用大数据系统后,全球移动运营商的客户流失将大大减少,到2018年因减少客户流失所带来的收益将超过40亿美元。该报告称,大数据平台的启用让运营商能够预测客户流失的可能性,并采取预防措施,从而减少收入损失。一些领先的网络运营商已经发现,在应用大数据技术后,客户流失显着减少。
伴随着云计算和大数据的发展热潮,数据作为一种无形资产的价值正在日益得到认可。在大数据时代,电信运营商需要重视并建立大数据体系,掌握大数据技能,发掘大数据价值,从而为自身的转型发展提供强劲动力。
要建立大数据管理体系
电信运营商有着大量的用户数据、业务数据、服务数据和网络数据,经过长期运营,这些数据逐渐积累起来。但是,没有管理的数据就像埋藏在地下的矿产,价值无法体现。运营商当前由于没有全局性大数据管理体系,现存数据信息呈现出碎片、割裂和孤岛状的特点,难以深入应用。
对于大数据的应用已经成为一种必然趋势,其发展势头非常强劲。研究机构Gartner预测,2020年全球超过75%的企业都将在日常的经营和决策过程中引入大数据分析系统,利用大数据的能力逐渐成为企业实现可持续发展的基本素质。
电信运营商掌握着丰富的数据资源,在利用大数据方面具有天然优势。Sysbase发布的分析报告称,电信行业在运营中引入大数据系统后,人均产值将提升17%以上,大数据对于行业发展的贡献排在了所有因素的首位。不过,电信运营商要想充分利用数据资源来创造价值,就必须对现有的IT系统和平台进行升级改造。
实现大数据管理,需要进行运营商IT系统的变革。例如,在网管系统方面,需要打破传统以专业划分的独立网管建设体系,建立能够支撑端到端业务、实现全视景管理的综合平台,便于数据关联;在业务支撑系统方面,由偏重于后台计费账务,转变为关注前台客户服务,同时需要适度集中化,提高数据集规模。实现数据管理还需要增强数据的深度解析与收集能力,以提高对用户、业务和网络的感知能力,加强数据的多样性。
实现大数据管理,需要具备全生命周期的数据平台,打通、整合运营商各类数据,作为管理落地的载体和驱动大数据应用的工具。考虑到数据规模,电信运营商需要在平衡好完整性、一致性和性能要求的基础上,做好平台的集中与分布相结合的全国布局;还应针对热点数据、在线数据、近线数据选择不同方式的存储并根据数据特点进行动态调整,在实现数据快速访问的同时,降低存储成本、优化使用效率。
要建立大数据驱动体系
在建立大数据管理体系和大数据平台的基础之上,要充分发挥大数据的驱动作用,驱动电信运营商经营内涵的升级,驱动管理效率提高,实现更精准的营销,实现商业模式的探索和改良。运营商历来重视业务驱动和技术驱动,大数据驱动可以使运营商多一些互联网思维,用来重构业务、建设、运营模式,使得大数据成为运营商的核心竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23