京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析如何帮助医院挽救败血症患者生命
大数据、预测分析、实时、可行动的洞察力等都是围绕着通过数据发掘其中价值的时髦词语。有时候一些好处仅限于圈内人士知晓,或是至少难以显现出来,但是有时候一些好处是显而易见的,例如对抗美国第一大死因败血症时。
败血症是一种非常严重的病症,当身体免疫系统对感染无法释放出强大的抵抗力时就会发生败血症。免疫系统药品会引发广泛的炎症,这些炎症会导致血液受损,破坏身体器官(或是导致器官不能正常发挥功能)。
据美国综合医学科学研究所称,每年有100多万美国人会患上严重的败血症,其28%至50%的患者会因此死亡,每年的死亡人数已经超过了因前列腺癌、乳腺癌和艾滋病死亡的总人数。败血症是美国医院中非冠心病重病监护室中的主要致死病因,也是美国排名第十位的致死病因。
败血症如何产生的
败血症往往是在医院中发生的,因为它们常源于一些其它疾病,如肺部感染、尿路感染、皮肤感染、阑尾炎感染或是因侵入性医疗程序(如对血管的插入会导致细菌进入血液当中)。
败血症前兆,病人出现全身炎症反应综合征(SIRS)的迹象甚至是在医院环境中也难以被诊断出来,因为它们与其它的病症非常像。发烧、发冷、呼吸急促和心率过快等常见病状都会让医生产生误诊。诊断败血症通常需要验血查看白细胞的数量异常情况,或是乳酸水平升高情况,这些都与病情的严重性相关。胸透或是CT扫描也可以用于识别感染情况。
很不幸的是,这些症状通常都发生在患者出院以后。病情的出现是无法预料的,并且恶化速度很快,这意味着患者已经出现了严重败血症,在寻求帮助之前他们正朝着败血性休克和多器官功能丧失发展。
这将使得病情更加恶化,因为一旦发生败血性休克后患者就难以苏醒。器官的损伤是永久性的,在发展成败血症之前,最关键的是尽早发现全身炎症反应综合征(SIRS)。
败血症并不仅仅是一个杀手,它们还将耗费医疗卫生行业大量的资金。美国医疗保健研究与质量管理署发现,败血症是美国医院中花费最为昂贵的病症,2011年相关治疗的花费超过了200亿美元(超出了第二昂贵的关节炎的治疗花费50亿美元),并且败血症的发病率自2011年以来还在持续增长。
大数据的介入
此时,文章开头所提及的那些大数据时髦词语就可发挥用武之地了。IT咨询与管理服务提供商日立咨询(日立旗下子公司)与医疗设备制造商Vital Connect和专业分析公司ClearStory Data联手推出了一种可检测SIRS相关症状的实时临床监控方案。
解决方案原型已经在今年4月的HIMSS15医疗保健IT大会上进行过展示。该方案由类似创可贴的一次性无线生物传感器(经FDA认证的生物传感器)、通过ClearStory Data解决方案实现的患者数据实时处理,以及允许医疗专家迅速采取措施的消耗性分析组成。
Vital Connect的生物传感器用于监视患者的重要生命体征,追踪一些包括身体活动、姿势甚至是是否跌倒等信息。它们会通过无线与智能手机连接,此时应用上会显示如步数、心率、呼吸、皮肤温度等数据。当患者清醒、睡眠,甚至是沐浴时都可以被佩戴它们。
ClearStory Data提供了近实时测量,海量生物传感器数据将根据临床实践标准建立起来的算法进行分析。患者的情况(如上图所示)将用于确定和提醒临床医生患者可能处于风险当中。
智能手机应用将把患者临床数据上传至云端数据库,然后与(NoSQL和SQL数据源、高级数据源等)其它数据来源获得的患者当前数据综合在一起。护理人员可使用ClearStory Data根据系统模型对数据进行分析和关联,以检测SIRS的可能性。
ClearStory Data 的创始人兼首席执行官Sharmila Mulligan称:“这些设备可提供心率、体温、能量消耗、血压等数据(+微信关注网络世界),甚至是身体姿势。当你患上败血症时你的姿势会发生变化,在行走中你的速度会放缓。如果患者的一些特征真地开始达到特定数值,那么他们肯定正处于高度危险当中。护理人员需要实时查看这些数据。”
以Apache Spark 为计算引擎的ClearStory Data可提供了近实时测量,海量生物传感器数据将根据传统人类临床监控学科中的临床实践标准建立起来的算法进行分析。患者的情况将用于确定和提醒临床医生患者可能处于风险当中。血清水平能够被用于确认SIRS和/或败血症的存在。
挽救生命和节约成本
美国各州目前已经开始采取措施以挽救生命,降低医疗保健成本。纽约在2013年率先采取行动,州长安德鲁·库默引入了一套监管程序,要求医院采取循证医学实践以降低败血症患者的死亡率。
之所以迅速采取措施部分原因是2012年纽约皇后区六年级学生12岁的Rory Staunton在体育课上打篮球受伤后死于严重的败血症休克。Staunton在纽约大学医学中心急诊室接受了治疗然后回家。在医疗采集到的生命体征已经显示出了败血症诊断的症状,但是遗憾的是护理人员没有能够这些联系起来。三天后,Staunton在重症监护室内死亡。
16个州也迅速跟进,采取了与纽约相同的措施。Mulligan 称:“每个国家中都存在这一问题,他们也都在采取相同的措施。”
例如,新加坡实施了一个为期五年的项目以实现整个国家的数字化。作为该项目中的一部分,每名离开非冠心病重病监护室的患者都将得到一个生物传感器,以监控他们的身体情况。
Mulligan 称:“这一开拓性的解决方案将让医院和临床护理人员能够根据实时数据迅速对患者的护理和诊断做出决策,同时降低医疗开支。这一解决方案表明下一代分析的速度、规模和能力可满足实时处理这些关键信息的需求,证明医疗保健中的史无前例的创新就在触手可及的地方。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06