京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析最重要的可能并不是你熟悉的编程工具、分析软件,或者统计学知识,而是清楚你所使用的统计知识(统计学、计量、时间序列、非参数等等)背后的原理、假设及其局限性,知道各种数据分析工具(例如数据挖掘)能带来什么,不能带来什么,看到一组统计检验的结果你能言说什么,不能言说什么。这一切的背后,需要一套完整的「科学」逻辑框架,让你了解自己手中的工具的本质,你才能从数据中「正确地」发现有效的信息,而不是胡乱地使用一大堆自己都搞不清楚的工具来堆砌分析结果,这样得到分析结果不仅无用,而且有害。
知道了这些后,希望成长为「数据分析师」,就需要着手训练自己的能力和洞察力。既然是「数据分析师」,那就分别从「数据」和「分析」两方面入手。
「数据」当然包含了数据收集、处理、可视化等内容,每个环节对于最后的结果都有关键性的影响。其中涉及的技术性内容只是一部分而已,更重要的是你要理解数据收集(是否存在采样偏差?如何纠正或者改进?)、处理(是否有漏洞或异常情况没有考虑?)背后的逻辑。
例如:如果分析股票数据用于设计交易策略,那么你不仅需要明白数据处理本身的问题,还要清楚金融市场的基本知识。例如,使用股票价格时,到底要用收盘价,还是复权价;复权价的话要用前复权价还是后复权价。这些选择与数据分析没有太大的关系,纯粹决定于你分析的目的是什么。因此你要充分了解这些概念背后的逻辑、动机是什么,才能正确地根据自己的目的作出选择。
数据可视化更多的是一门艺术:如何把信息以最恰当的方式呈现给希望获得这些信息的人。首先,你要充分理解这些信息究竟是什么,有什么特点,你才能较为恰当的选择采用的可视化工具。
另外一部分就是「分析」。当然就是各种分析模型,还是需要了解这些模型背后的逻辑,要放到整个项目的上下文中去看,而不是单纯地在模型中看。
总而言之,「理解」数据以及其中的信息是非常重要的,这决定了你的分析和呈现的方法是否合适,决定了最后的结论是否可靠。
现在可以回答题主的问题了:成长为一个数据分析师,要注意「理解」你的知识,形成一个系统,而不是像机器人一样机械地胡乱套用模型。在这个理念下训练你的编程能力,了解你所分析对象的原理和尽可能多的细节。在这个基础上,才能谈数据分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20