
大数据信息隐私杀伤力有多大
随着大数据被挖掘,我们在使用着大数据,享受着它带给我们的美好体验和便利生活。在此过程中,大数据技术越来越发达,人们可以用更加先进的方法使用大数据。同时,大数据相关分析工具的发展也稳步进行。国内大数据厂商也层出不穷。大数据魔镜就是一款强大而免费的大数据分析工具。有了这样的基础,人们对大数据的利用再慢慢加深。不过随之而来的,是数据信息对我们隐私的“探掘“。
我们在不断的隐私被侵犯中,慢慢学着“习惯”。在这过程中,有政府情报机构基于政治目的,对我们进行的监督和控制;有互联网企业基于商业目的,对我们进入的数据搜集与处理……包括苹果公司所说的,我们通过数据向用户投放定向广告,这是个优点,因为可以提供给用户与其收入情况相匹配的广告。对此,我们只能说“谢谢了”。
因为,你可以通过数据信息知道我的收入状况,也就意味着你可以知道更多状况;你可以把收入状况“分享”给广告客户,也就意味着你可以“分享”更多的内容给有需要的客户,最后只是你们之间商讨价码的问题。但是,就是这些你们认为可以赚钱而并没有那么严重的东西,或许就有可能给别人带来灾难性的伤害。
这让人想到了曾经的莫妮卡•莱温斯基,也许这个案例并不是最恰当的,但就是这么个普普通通的前白宫实习生,当她与美国总统克林顿的爱情丑闻被互联网公之于众时,瞬间变成了全世界公开羞辱的对象,被贴上了“淫妇”、,“荡妇”,“婊子”,“贱人”等标签。
庆幸,莱温斯基活下来了,但并不是每个人都那么幸运。在今年年初的TED大会上,莱温斯基在与大家分享《耻辱的代价》时,讲到了这样一个案例: 2010年9月,泰勒•克莱门蒂,美国罗格斯大学的大一新生。可爱、敏感、富有创意的克莱门蒂被室友偷拍到和另一个男人有亲密关系。当这个同性恋的视频在网络世界曝光后,嘲笑和网络欺凌的火种被迅速点燃。几天后,泰勒从乔治华盛顿大桥上纵身跳下。一个年仅18岁的生命就这样逝去。一个悲剧而无谓的死亡。或许有人会觉得克莱门蒂心理素质不过关,敢做还怕别人说嘛?这就好比说,比尔盖茨有亿万家产,他就不能介意自己的银行卡号和密码被泄密?理由只是“有钱还怕别人惦记”嘛?其实别说有钱,就是没钱也不乐意别人“惦记”我的卡号密码。因为那里面可能就是生命的全部财富支撑。如果信息被泄露了,如果卡上的数字瞬间“清零”了, 后果可想而知。
随着数字信息技术的不断发展,“网络匿名”有可能会变成“数学上不可能”的事。
1995年,欧盟出台的隐私法例将“个人资料”定义为可以直接或间接识别一个人的信息。很显然,当时立法者考虑的是那些带有身份标识号的文件资料之类的东西,这些标识号就好像人的姓名,而立法者们希望它们可以得到保护。
如今,“个人资料”这一定义所包含的内容已经远远超出当年那些立法官员的想象,甚至可以轻易地超过18年前他们通过这项法例时整个世界的数据量。
来看看到底发生了什么。首先,这个世界每年所创造的数据量在以指数形式增长,去年,这一数字则达到了2.8ZB(1ZB =10244GB),听起来就很可怕的数字,而且据知名信息行业咨询服务商IDC称,这一数字将在2015年翻一番。此外,这些数据中的3/4是由个体人在创造或移动数字文件时贡献的。举例来说,一个标准的美国上班族每年可以贡献180万MB的数据量,平均每天则有约5000MB,这其中包括下载的电影、文档、电邮以及这些数据通过移动或非移动互联网传播时所产生的附加数据量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08